导航菜单
首页 >  » 正文

X分之一的导数是多少 a的n次方减b的n次方如何因式分解

X分之一的导数是多少

x分之一的导数等于-1/x²。

1/x导数计算过程

扩展资料:

导数的计算

计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。

导数的求导法则

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。

导数导数(Derivative)也叫导函数值,又名微商,是微积分学中重要的基础概念,是函数的局部性质。 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。 中文名 导数 展开 提出

a的n次方减b的n次方如何因式分解

(x^n-a^n)=(x-a)(x^(n-1)+ax^(n-2)+...a^(n-1))
例如:x^2-a^2=(x-a)(x+a)
x^3-a^3=(x-a)(x^2+ax+a^2)
x^4-x^4=(x-a)(x^3+3x^2a+3xa^2+a^3)
b+...+(-1)^(r-1)a^(n-r)b^(r-1)+...+b^(n-1)]
n为大于零的奇数,r为中括号内项的序数,后面括号中各项式的幂之和都为n-1,an表示a的n次方。(n大于0且n不等于2)
解题时常用它的变形:(a+b)^3=a^3+b^3+3ab(a+b)和 a^3+b^3=(a+b)^3-3ab(a+b)=(a+b)(a^2+b^2-ab),相应的,立方差公式也有变形:a^3-b^3=(a-b)^3+3ab(a-b)=(a-b)(a^2+b^2+ab)。
扩展资料

解题过程:



因为1991可以分成996和995
所以如果


 解得x=996,y=995
如果x+y=181,x-y=11,x=96,y=85同时也可以是负数
所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995
或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85
有时应注意加减的过程。

相关推荐: