离散数学。 证明A-B-C=(A-C)-(B-C)
(A-C)-(B-C)
=(A交C的补集)交((B交C的补集)的补集)
=(A交C的补集)交((C并B的补集)
=((A交C的补集)交C)并((A交C的补集)交B的补集)
=(A交C的补集)交B的补集
=(A交B的补集)交(C的补集)
=A-B-C
离散数学 证明 A×(B∪C)=(A×B)∪(A×C)
不太好。因为你的表示假设了 A,B,C有限。 按你的思路,可以这么表述:
A×B={(a,b)| a∈A , b∈B }
A×C={(a,c)| a∈A , c∈C }
(A×B)∪(A×C)={ (a,b),( a , c) | a∈A , b∈B , c∈C }
={ (a,d) | a∈A , d∈B 或 d∈C }
={ (a,d) | a∈A , d∈B ∪C }
=A×(B∪C)
离散数学求助,R·S是怎么算的,求告知
二元关系R与S的复合(也叫作合成)
例如:
R={<1,2>,<2,3>,<1,4>,<3,1>}
S={<2,3>,<3,4>,<1,2>,<4,1>}
R。S={<1,3>,<2,4>,<1,1>,<3,2>}
S。R={<2,1>,<1,3>,<4,2>,<4,4>}
离散数学是传统的逻辑学
集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。离散数学的应用遍及现代科学技术的诸多领域。
考研601数学是什么
这个考试科目代码,常在考研科目中出现。一般认为高数301为高教版高等数学一,是考研中最难的数学,包括高数、线代和数理统计高数302为高教版高数二,包含高数的部分和线代还有一个高数361吧,代表的是同济版的高等数学,难度和高教版差不多,侧重方向不同高等数学601强军计划的研究生。。。。602高等数学(高等数学一般是指微积分)是学校自命题,要与学校联系,看考试范围数学一:包含线代,高数,概率。适用的学科为:1.工学门类的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科、专业. 2.工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业. 3.管理学门类中的管理科学与工程一级学科按此划分,绝大多数院校的计算机专业都会选择考数学一,这也是从事计算机所必须的最低数学功底。数学二:包含线代,高数。适用的学科为:1.工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等一级学科中所有的二级学科、专业. 2.工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较低的二级学科、专业. 数学三:常被称为经济数学,包含线代,概率,高数。适用学科为:1.经济学门类的应用经济学一级学科中统计学、数量经济学二级学科、专业. 2.管理学门类的工商管理一级学科中企业管理、技术经济及管理二级学科、专业. 3.管理学门类的农林经济管理一级学科中对数学要求较高的二级学科、专业
ln(cosx)的积分怎么求?
解:令x=π/2-t,则在积分区间[0,π/2],有∫ln(sinx)dx=∫ln(cosx)dx。
另外,原式=∫(x=0,π/4)ln(cosx)dx+∫(x=π/4,π/2)ln(cosx)dx。对后一个积分,令x=π/2-θ,则∫(x=π/4,π/2)ln(cosx)dx=∫(θ=0,π/4)ln(sinθ)dθ,∴原式=∫(x=0,π/4)[ln(cosx)+ln(sinx)]dx=∫(x=0,π/4)ln[(1/2)(sin2x)]dx=∫(x=0,π/4)ln(sin2x)dx-(π/4)ln2【再令2x=y】=(1/2)∫(x=0,π/2)ln(siny)dy-(π/4)ln2。
∴∫(x=0,π/2)ln(cosx)dx=(1/2)∫(x=0,π/2)ln(cosx)dx-(π/4)ln2,即∫(x=0,π/2)ln(cosx)dx=-(π/2)ln2。供参考。
不定积分的公式:
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
使用IF函数,对excel的“学位”列进行自动填充。比如博士研究生对应博士,硕士研究生对应硕士。那么if函数的logical test该写什么?
使用IF函数,对Sheet1中的“学位”列进行自动填充。要求:填充的内容根据“学历”列的内容来确定(假定学生均已获得相应学位):
- 博士研究生-博士
- 硕士研究生-硕士
- 本科-学士
- 其他-无
=IF(G3="博士研究生","博士",IF(G3="硕士研究生","硕士",IF(G3="本科","学士","无")))
(1+sinx)/sinx(1+cosx)的不定积分
∫1/sinx dx
=∫1/[2sin(x/2)cos(x/2)] dx,两倍角公式
=∫1/[sin(x/2)cos(x/2)] d(x/2)
=∫1/tan(x/2)*sec²(x/2) d(x/2)
=∫1/tan(x/2) d[tan(x/2)], [注∫sec²(x/2)d(x/2)=tan(x/2)+C]
=ln|tan(x/2)|+C, (答案一)
进一步化简:
=ln|sin(x/2)/cos(x/2)|+C
=ln|2sin(x/2)cos(x/2)/[2cos²(x/2)]|+C,凑出两倍角公式
=ln|sinx/(1+cosx)|+C
=ln|sinx(1-cosx)/sin²x|+C
=ln|(1-cosx)/sinx|+C
=ln|cscx-cotx|+C, (答案二)