导航菜单
首页 >  » 正文

微分方程的特解怎么求 根号下1 x的不定积分怎么算?

微分方程的特解怎么求

二次非齐次微分方程的一般解法

一般式是这样的ay+by+cy=f(x)

第一步:求特征根

令ar²+br+c=0,解得r1和r2两个值,(这里可以是复数,例如(βi)²=-β²)

第二步:通解

1、若r1≠r2,则y=C1*e^(r1*x)+C2*e^(r2*x)

2、若r1=r2,则y=(C1+C2x)*e^(r1*x)

3、若r1,2=α±βi,则y=e^(αx)*(C1cosβx+C2sinβx)

第三步:特解

f(x)的形式是e^(λx)*P(x)型,(注:P(x)是关于x的多项式,且λ经常为0) 则y*=x^k*Q(x)*e^(λx) (注:Q(x)是和P(x)同样形式的多项式,例如P(x)是x²+2x,则设Q(x)为ax²+bx+c,abc都是待定系数)

1、若λ不是特征根 k=0 y*=Q(x)*e^(λx)

2、若λ是单根 k=1 y*=x*Q(x)*e^(λx)

3、若λ是二重根 k=2 y*=x²*Q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)

f(x)的形式是e^(λx)*P(x)cosβx或e^(λx)*P(x)sinβx

1、若α+βi不是特征根,y*=e^λx*Q(x)(Acosβx+Bsinβx)

2、若α+βi是特征根,y*=e^λx*x*Q(x)(Acosβx+Bsinβx)(注:AB都是待定系数)

第四步:解特解系数

把特解的y*,y*,y*都解出来带回原方程,对照系数解出待定系数。 最后结果就是y=通解+特解。 通解的系数C1,C2是任意常数。

拓展资料:

微分方程

微分方程指描述未知函数的导数与自变量之间的关系的方程。微分方程的解是一个符合方程的函数。而在初等数学的代数方程,其解是常数值。

高数常用微分表

唯一性

存在定一微分程及约束条件,判断其解是否存在。唯一性是指在上述条件下,是否只存在一个解。针对常微分方程的初值问题,皮亚诺存在性定理可判别解的存在性,柯西-利普希茨定理则可以判别解的存在性及唯一性。针对偏微分方程,柯西-克瓦列夫斯基定理可以判别解的存在性及唯一性。 皮亚诺存在性定理可以判断常微分方程初值问题的解是否存在。

根号下1 x的不定积分怎么算?

答案是-2/3*(1-x)^(3/2)+C
解题思路:
∫√(1-x)dx
=-∫(1-x)^(1/2)d(-x)
=-2/3*(1-x)^(3/2)+C
扩展资料
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

卡西欧计算器,fx 991CN X,怎么来计算微分,导数,不定积分

卡西欧的这款计算器mode-eqn里面能够解多种方程,但绝大多数人并不了解他的具体使用步骤,下面将以(X-5)*(X+7)=0为例详细讲解操作的过程,具体如下所述:
1、首先点击mode按钮,计算器进入系统,如图所示

2、然后点击输入2:stat,如图所示

3、接下来选则二次方程,就是第三个选项,如图所示

4、然后输入三个坐标(-1,0,1),如图所示

5、然后点击一下AC按钮,返回空白处输入0,按Fhift+1按钮进入分析模式,选择第5个,如图所示

6、接着选择X1或X2,如图所示

7、最后按一下=按钮,结果就出现了,如图所示。

怎样在Word打出数学方程中的那个“x”??

1、依次点击“插入”-“特殊符号”,选择“数学符号”,选择“乘号”。
2、中文输入法(极点输入法)调出数学符号软键盘,选择“乘号”。
3、搜狗输入法,输入ch,选择3即可

相关推荐: