高中数学零基础怎么办!!
你好,我是一名刚刚高考完的高考党。对于高中数学,个人认为是一个在初中数学上的提升和拓展,如果你初中数学学的还可以的话高中数学还是很好学的。但是我现在也不知道您是一个什么身份(高中生?高几?),所以不能够针对的帮助您。笼统的来说,就是从课本抓起,一个一个专题的看,而且要注重课本上的例题,能被选为例题就说明这道题具有一定的特点和代表性,所以一定要重点看,看完之后要做一下后面的练习看看自己有没有还不太熟练的地方。如果经济条件允许的话建议买一本辅导书或练习册,做一做上面的题,进一步熟练自己掌握的知识,而且上面还会有以下做题的技巧、方法之类的,而且还有书后练习的答案。买的话比较建议王后雄或轻巧夺冠这两本(买一本即可),我都做过而且感觉比较好。如果是学生的话平时还可以多去问问老师。
手打不易,望采纳。
高中数学的基本思想方法有哪些
高中数学基本数学思想
1.转化与化归思想:
是把那些待解决或难解决的问题化归到已有知识范围内可解问题的一种重要的基本数学思想.这种化归应是等价转化,即要求转化过程中的前因后果应是充分必要的,这样才能保证转化后所得结果仍为原题的结果. 高中数学中新知识的学习过程,就是一个在已有知识和新概念的基础上进行化归的过程.因此,化归思想在数学中无处不在. 化归思想在解题教学中的的运用可概括为:化未知为已知,化难为易,化繁为简.从而达到知识迁移使问题获得解决.但若化归不当也可能使问题的解决陷入困境. 例证
2.逻辑划分思想(即分类与整合思想):
是当数学对象的本质属性在局部上有不同点而又不便化归为单一本质属性的问题解决时,而根据其不同点选择适当的划分标准分类求解,并综合得出答案的一种基本数学思想.但要注意按划分标准所分各类间应满足互相排斥,不重复,不遗漏,最简洁的要求. 在解题教学中常用的划分标准有:按定义划分;按公式或定理的适用范围划分;按运算法则的适用条件范围划分;按函数性质划分;按图形的位置和形状的变化划分;按结论可能出现的不同情况划分等.需说明的是: 有些问题既可用分类思想求解又可运用化归思想或数形结合思想等将其转化到一个新的知识环境中去考虑,而避免分类求解.运用分类思想的关键是寻找引起分类的原因和找准划分标准. 例证
3. 函数与方程思想(即联系思想或运动变化的思想):
就是用运动和变化的观点去分析研究具体问题中的数量关系,抽象其数量特征,建立函数关系式,利用函数或方程有关知识解决问题的一种重要的基本数学思想.
4. 数形结合思想:
将数学问题中抽象的数量关系表现为一定的几何图形的性质(或位置关系);或者把几何图形的性质(或位置关系)抽象为适当的数量关系,使抽象思维与形象思维结合起来,实现抽象的数量关系与直观的具体形象的联系和转化,从而使隐蔽的条件明朗化,是化难为易,探索解题思维途径的重要的基本数学思想.
5. 整体思想:
处理数学问题的着眼点或在整体或在局部.它是从整体角度出发,分析条件与目标之间的结构关系,对应关系,相互联系及变化规律,从而找出最优解题途径的重要的数学思想.它是控制论,信息论,系统论中“整体—部分—整体”原则在数学中的体现.在解题中,为了便于掌握和运用整体思想,可将这一思想概括为:记住已知(用过哪些条件?还有哪些条件未用上?如何创造机会把未用上的条件用上?),想着目标(向着目标步步推理,必要时可利用图形标示出已知和求证);看联系,抓变化,或化归;或数形转换,寻求解答.一般来说,整体范围看得越大,解法可能越好.
在整体思想指导下,解题技巧只需记住已知,想着目标, 步步正确推理就够了.
中学数学中还有一些数学思想,如:
集合的思想;
补集思想;
归纳与递推思想;
对称思想;
逆反思想;
类比思想;
参变数思想
有限与无限的思想;
特殊与一般的思想.
它们大多是本文所述基本数学思想在一定知识环境中的具体体现.所以在中学数学中,只要掌握数学基础知识,把握代数,三角,立体几何,解析几何的每部分的知识点及联系,掌握几个常用的基本数学思想和将它们统一起来的整体思想,就定能找到解题途径.提高数学解题能力.
数学解题中转化与化归思想的应用
数学活动的实质就是思维的转化过程,在解题中,要不断改变解题方向,从不同角度,不同的侧面去探讨问题的解法,寻求最佳方法,在转化过程中,应遵循三个原则:1、熟悉化原则,即将陌生的问题转化为熟悉的问题;2、简单化原则,即将复杂问题转化为简单问题;3、直观化原则,即将抽象总是具体化.
策略一:正向向逆向转化
一个命题的题设和结论是因果关系的辨证统一,解题时,如果从下面入手思维受阻,不妨从它的正面出发,逆向思维,往往会另有捷径.
例1 :四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不共面的取法共有__________种.
A、150 B、147 C、144 D、141
分析:本题正面入手,情况复杂,若从反面去考虑,先求四点共面的取法总数再用补集思想,就简单多了.
10个点中任取4个点取法有 种,其中面ABC内的6个点中任取4点都共面有 种,同理其余3个面内也有 种,又,每条棱与相对棱中点共面也有6种,各棱中点4点共面的有3种, 不共面取法有 种,应选(D).
策略二:局部向整体的转化
从局部入手,按部就班地分析问题,是常用思维方法,但对较复杂的数学问题却需要从总体上去把握事物,不纠缠细节,从系统中去分析问题,不单打独斗.
例2:一个四面体所有棱长都是 ,四个顶点在同一球面上,则此球表面积为( )
A、 B、 C、 D、
分析:若利用正四面体外接球的性质,构造直角三角形去求解,过程冗长,容易出
高中数学常用的特殊值
这是一些特殊的函数至,你看看吧,熟了就都记住了
(1)特殊角三角函数值
sin0=0
sin30=0.5
sin45=0.7071 二分之根号2
sin60=0.8660 二分之根号3
sin90=1
cos0=1
cos30=0.866025404 二分之根号3
cos45=0.707106781 二分之根号2
cos60=0.5
cos90=0
tan0=0
tan30=0.577350269 三分之根号3
tan45=1
tan60=1.732050808 根号3
tan90=无
cot0=无
cot30=1.732050808 根号3
cot45=1
cot60=0.577350269 三分之根号3
cot90=0
(2)0°~90°的任意角的三角函数值,查三角函数表。(见下)
(3)锐角三角函数值的变化情况
(i)锐角三角函数值都是正值
(ii)当角度在0°~90°间变化时,
正弦值随着角度的增大(或减小)而增大(或减小)
余弦值随着角度的增大(或减小)而减小(或增大)
正切值随着角度的增大(或减小)而增大(或减小)
余切值随着角度的增大(或减小)而减小(或增大)
(iii)当角度在0°≤α≤90°间变化时,
0≤sinα≤1, 1≥cosα≥0,
当角度在0°<α<90°间变化时,
tanα>0, cotα>0.
“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。
附:三角函数值表
sin0=0,
sin15=(√6-√2)/4 ,
sin30=1/2,
sin45=√2/2,
sin60=√3/2,
sin75=(√6+√2)/2 ,
sin90=1,
sin105=√2/2*(√3/2+1/2)
sin120=√3/2
sin135=√2/2
sin150=1/2
sin165=(√6-√2)/4
sin180=0
sin270=-1
sin360=0
对了,看完了你在看看这里的
高中数学分哪几个板块?
四个大板块:函数、概率与统计、立体几何、解析几何
其中又细分为:《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等。
高中数学书本包含:必修一、必修二、必修三、必修四、必修五,选修二、选修三、选修四。
当前我国数学教学中的突出问题,恰好是把掌握数学基础,即数学概念的正确理解,给忽视了。一方面是教材低估了学生的理解能力,为了“减负”,淡化甚至回避一些较难理解的基本概念;另一方面,“题海战术”式的应试策略,使教师没有充分的时间和精力去钻研如何使学生深入理解基本的数学概念。说是为了减负,其实南辕北辙,老师、学生的压力都增加了。
没有“过程”的教学,因为缺乏数学思想方法为纽带,概念间的关系无法认识,概念间的联系难以建立,导致学生的数学认知结构缺乏整体性。
高中数学问题,一元二次方程中△大于零小于零等于零是怎么判断的?
展开全部
△是一次项系数的平方减去4倍的二次项系数乘以常数项的积之后的差(方程是ax^2+bx+c=0,△是b^2-4ac),大于零就有两个不同的解,等于零就有两个相同的解,小于零就没有实数解,有解得时候方程的解是x(1,2)=x=[-b±(b^2-4ac)^(1/2)]/2a
高等代数。基础解系怎么求?要通用的方法。求AX=0的基础解系。
1、如何求基础解系:
设n为未知量个数,r为矩阵的秩。只要找到齐次线性方程组的n-r 个自由未知量,就可以获得它的基础解系。具体地说,我们先通过初等行变换把系数矩阵化为阶梯形,那么阶梯形的非零行数就是系数矩阵的秩。把每一个非零行最左端的未知量保留在方程组的左端,其余n-r 个未知量移到等式右端,再令右端 n-r个未知量其中的一个为1,其余为零,这样可以得到 n-r个解向量,这 n-r个解向量构成了方程组的基础解系。
2、AX=0的基础解系,例如:
(1)1 2 -3 -2
-2 3 5 4
-3 8 7 6
解: A-->
r2+2r1,r3+3r1,r2*(1/7)
1 2 -3 -2
0 7 -1 0
0 14 -2 0
r3-2r2
1 2 -3 -2
0 1 -1/7 0
0 0 0 0
r1-2r2
1 0 -19/7 -2
0 1 -1/7 0
0 0 0 0
基础解系为: a1=(19,1,7,0), a2=(2,0,0,1)
通解为: c1a1+c2a2, c1,c2为任意常数.
基础解解系求通解的k什么时候不能为零
1. AX=β和AX=0解中的k是不是不一样的啊?
需要清楚AX=β的解的组成:
AX=β的解由AX=0的通解+AX=β的一个特解组成。
而系数k是产生于通解。所以:AX=β和AX=0解中的k是一样的。
AX=β的通解如果是k1α1+k2α2, k1、k2是不是不能同时为零,那AX=0呢?
我们讲非齐次线性方程组的解只有基础解系。齐次方程的解才叫通解。
通解k是可以随意取值的。所以,k1,k2可以同时为0.
AX=0 也是一样的。 他是方程的一个特解:零解