导航菜单
首页 >  » 正文

ln(1+x)的不定积分怎么求 高等代数。基础解系怎么求?要通用的方法。求AX=0的基础解系。

ln(1+x)的不定积分怎么求

∫ln(1+x)dx
=x*ln(1+x)-∫xd(ln(1+x))【分部积分法】
=x*ln(1+x)-∫[x/(1+x)]dx
=x*ln(1+x)-∫[(1+x)-1]/(1+x)dx
=x*ln(1+x)-∫[1-(1/1+x)]dx
=x*ln(1+x)-x+ln(1+x)+C
=(x+1)*ln(1+x)-x+C
函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。
其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。
扩展资料:
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。
设G(x)是f(x)的另一个原函数,即∀x∈I,G(x)=f(x)。于是[G(x)-F(x)]=G(x)-F(x)=f(x)-f(x)=0。
由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。
这表明G(x)与F(x)只差一个常数.因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。
由此可知,如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。

高等代数。基础解系怎么求?要通用的方法。求AX=0的基础解系。

1、如何求基础解系:
设n为未知量个数,r为矩阵的秩。只要找到齐次线性方程组的n-r 个自由未知量,就可以获得它的基础解系。具体地说,我们先通过初等行变换把系数矩阵化为阶梯形,那么阶梯形的非零行数就是系数矩阵的秩。把每一个非零行最左端的未知量保留在方程组的左端,其余n-r 个未知量移到等式右端,再令右端 n-r个未知量其中的一个为1,其余为零,这样可以得到 n-r个解向量,这 n-r个解向量构成了方程组的基础解系。
2、AX=0的基础解系,例如:
(1)1 2 -3 -2
-2 3 5 4
-3 8 7 6
解: A-->
r2+2r1,r3+3r1,r2*(1/7)
1 2 -3 -2
0 7 -1 0
0 14 -2 0
r3-2r2
1 2 -3 -2
0 1 -1/7 0
0 0 0 0
r1-2r2
1 0 -19/7 -2
0 1 -1/7 0
0 0 0 0
基础解系为: a1=(19,1,7,0), a2=(2,0,0,1)
通解为: c1a1+c2a2, c1,c2为任意常数.

相关推荐: