导航菜单
首页 >  » 正文

分析化学在国民经济和科学研究中起着哪些重要作用 金属、高分子、复合材料、无机非金属的性能比较

分析化学在国民经济和科学研究中起着哪些重要作用

我们国家非常重视科学仪器研发和应用方面的工作;“十五”期间国家对仪器拨款总共约一个亿RMB左右;“十二五”期间,国家投资70多亿RMB,有的一个项目就有1.2亿以上(含自筹);“十三五”国家的支持力度更大,有的一个项目1.4亿RMB以上(含自筹)。目前,我国科学仪器及其应用的发展,正在蒸蒸日上。
  由于科学仪器是“四两拨千斤”的产业,发展前景非常广阔。基于它在国家的科技、经济、国防、民生和社会发展中战略地位的重要性,在“农、轻、重、海、陆、空、吃、穿、用”各行各业,无所不在,无所不有。所以,加速科学仪器产业发展已成为世界各国关注的重点之一。本文简单介绍我国科学仪器和应用发展的有关情况。
  一、光谱仪器
  从原理角度讲,光谱仪器可以分为:吸收光谱(紫外吸收、可见吸收、紫外可见吸收、气相分子吸收、红外吸收、原子吸收等)、发射光谱(荧光、拉曼、微波等离子体等)、旋光光谱等;从应用角度讲,可分为分子光谱(红外、紫外、可见、紫外可见、旋光、气相分子、荧光、拉曼等)、原子光谱(原子吸收、原子荧光等)。
  据作者初步统计,目前国际上的光谱仪器达20多种。但是,使用最多、覆盖面最广、最具有代表性的光谱仪器是紫外光谱、红外光谱、原子吸收光谱等。此外,如今的激光拉曼光谱和近红外光谱的发展也非常火爆。
 1、紫外分光光度计
  特别值得提出的是,目前在我国的应用领域中,覆盖面最广的紫外光谱仪器市场情况如下:排名居首的是岛津公司,居第二位的是国产的紫外仪器——北京普析通用,其紫外光谱仪器在中国市场上占比高于安捷伦、日立、珀金埃尔默等;可喜的是在我国应用领域,全球的紫外光谱仪器生产商所占市场的前10名中,我国占4名(40%),这是一个很值得高兴的现象。
  2、拉曼光谱仪
  虽说拉曼光谱仪器,目前国内市场还不大,但是目前有近20家在研发生产各类激光拉曼光谱仪器。它在食品药品、环保等领域的测量、质量检验等方面,将很快达到一定规模和水平。
3、近红外光谱仪
  从近红外光谱仪器的发展情况看;虽说近红外光谱的市场很大。但是,品牌分布比较分散,呈现众多品牌各有一定市场占有率的情况,而且没有任何一家有超过20%的市场占有率。不过,虽说目前近红外的发展还不尽人意,但是,国产近红外产品发展趋势很好。
 4、原子吸收光谱仪
  目前AAS在水质中的微量重金属(As、Hg、Cd、Cr、Cu等)检测方面非常受用户的青睐。例如:水中Cu大于1.5mg/L会有苦味;Cu对冠心病影响很大;水中Cu超标会抑制藻类生长,影响水产养殖;特别要注意的还有饮用水中的Hg、As等对人类危害特别大,都是致癌的微量元素。
  为什么AAS在分析检测工作中倍受青睐?一是价格便宜、性价比高;二是操作比较简单;三是灵敏度较高。所以,广大科技工作者应该重视AAS的应用发展情况。很多第三方检测机构都在大量使用AAS,目前发展很快值得大家高度重视。
  在整个光谱检测仪器的发展和进展方面,特别应该指出的是,近几年来,我国的新型光谱仪器不断涌现。例如:上海安杰公司具有知识产权的气相分子吸收光谱仪;南京简智公司的便携式差分拉曼光谱仪;北京西派特的ExR510激光拉曼光谱仪;还有,常州盛奥华公司的多种新型的水质检测光谱仪等。总之,我国的光谱仪器研发、应用的进展令人骄傲和自豪。
  二、色谱仪器
  在国产色谱仪器方面,气相色谱(GC)已经有几十家在生产,并且产品都比较成熟,基本上都能满足使用要求。例如:浙江福立的GC,质量很好,与国外同类产品可以抗衡,他们的HPLC也发展很快;又如:大连的依利特公司,上海的通微、伍丰等公司的产品比较齐全,都能满足使用要求;上海通微的高档色谱仪器(毛细管色谱、电色谱、HPLC等),主要销往国外,以对研究工作要求很高的国外著名大学为主要对象,他们的液相色谱、电色谱都处于国际领先地位;上海伍丰公司的HPLC,可靠性很好。总之,中国的色谱仪器发展的形势很好。
 1、HPLC仪器及其最新进展
  液相色谱仪器,近几年发展特别快,令人耳目一新。许多过去用紫外光谱做的分析工作,纷纷改为HPLC,不管是药品、食品、医疗、卫生、农业、环保等各个领域都是如此。因为它可以对复杂体系进行分离、分析、检测,值得大家重视。
  最近几年,HPLC需求量猛增。我国对各类HPLC的年需求量在10000台以上。全球每年需求约55亿美金以上。目前,在我国的、有一定规模的国外生产厂商及代理商有几十家,国内生产厂商20家左右;国产HPLC受外国人青睐,但是,国人迷信外国产品,令人费解。
  不过,色谱仪器目前面临三大挑战:高分辨率、高分离速度、高灵敏度。所以,目前新型的HPLC仪器不断涌现。具体体现在:
  1)二维及多维HPLC大发展:美国和日本生产的纳升级二维HPLC,组合了纳米微柱和二维HPLC色谱技术,可以直接用于蛋白质组学、基因组学研究工作;
  2)毛细管和纳升HPLC的发展,可进行微柱、毛细管柱和纳升柱三种微柱液相色谱分析工作;
  3)超高压液相色谱仪(UHPLC ),自从2004年WATERS公司推出 UPLC后,JASCO、AGILENT、THERMO-FISHER SCIENTIFIC、SHIMADZU、HITACHI都先后推出了各自的超高效液相色谱仪。UHPLC每套10万美金左右,去年在我国销售约1000台,共计1亿美金!
  4)特别值得提出的是:上海通微公司,近几年成功的完成了《加压毛细管色谱仪》国际首创,还完成了《定量毛细管电泳仪》,也是国际首创(一般毛细管电泳仪,定量分析精度很差)。并且,《高效微流电色谱仪器与应用》的研发项目,被国家科技部列为国家十二五重大攻关项目,目前已经通过国家验收。它可以与UHPLC抗衡,其柱效比UHPLC高10倍,5秒钟可以分离5个芳香烃,总体优于UHPLC,又是一个国际首创。我想,这些业绩,值得分析工作者高兴。
2、GC仪器及其应用最新进展
  长期以来,GC久销不衰。最近几年,GC需求量猛增,我国的需求量达到15000台以上。特别在酒类等挥发性的物质分析检测方面使用非常广泛。另外,在联用仪器发展中,GC也大显身手,如GC-IMS(IMS 离子迁移谱)、GC-MS等。
  前面讲的浙江福立、上海仪电、北京东西分析等的GC都可以满足使用要求,并且有些完全可以与国外抗衡。
  特别值得提出的是色谱数据处理系统,上世纪80年代以前,色谱分析“一天操作三天处理数据”,小峰往往只能“视而不见”;90年代起出现色谱数据处理机,大大减轻工作量但功能有限;而目前的色谱工作站不仅处理数据,更能反控仪器的运行,色谱分析开始进入“傻瓜”时代;结合自动进样器,目前色谱仪器已经步入自动化或智能化时代。随后,以HP-6890N为代表的“网络型”色谱仪开始流行,结合数据库技术,色-质联用分析结果也就有了在线联机检索的便利。我国福立公司的GC-9720型仪器打出了“云”的概念,指标与HP-6890几乎一样。鉴定会上得到了专家们的高度赞扬。从此,色谱分析不再高深莫测、繁杂难耐的时代过去了。
 3、薄层扫描色谱仪器及其应用的最新进展
  上海科哲仪器公司是目前世界上薄层扫描色谱仪器研发生产的三大品牌公司之一;他们生产多种型号的薄层扫描色谱仪器,销往国内外有关应用单位,用户反映质量和可靠性很好;科哲公司最新的、最具代表性的品牌是3500Plus型全功能薄层扫描色谱仪器,是目前国际同类产品中的佼佼者。
三、质谱仪器
  目前,国内有10多家公司在研发MS、ICP-MS、GC-MS等仪器,不过基本上都与国外同类产品存在一定差距,需要努力赶超。
  比如,虽然市场上已有不少国内外ICP-MS生产厂家及产品,但目前ICP-MS绝大部分市场份额被安捷伦、赛默飞、珀金埃尔默三家公司瓜分。
  不过值得一提的是,广州禾信公司的飞行时间质谱表现突出,已经销往美国和德国等发达国家。

金属、高分子、复合材料、无机非金属的性能比较

说一说大致的特点
金属:刚性高,导电导热性好,耐老化,耐高温,尺寸稳定性好,比重大,成本高,不易加工成型,比较脆
高分子:韧性好,一般不导电不导热,尺寸稳定性差,耐高温性差,比重小,成本低,易加工成型
复合材料:一般指为了改善高分子上述某个性能而改性的材料,不同的复合材料有不同特点,如有的复合材料可导电等
无机非金属:一般指硅酸盐类材料,成本低,稳定性最好,最耐高温,成本低,比重介于金属与高分子之间,最难加工成型,最脆,易断裂。

询问化学里的竞争平衡常数的定义及计算方法

定义:是指在一定温度下,可逆反应无论从正反应开始,还是从逆反应开始,也无论反应物起始浓度的大小,最后都能达到平衡,这时各种生成物浓度幂之积与反应物浓度的幂之积的比值是个常数,这个常数就是该反应的化学平衡常数(简称平衡常数),用K表示。
化学平衡常数计算方法:

化学平衡常数同阿伏加德罗常数以及物理中的万有引力常数一样都是一个常数,只要温度不变,对于一个具体的可逆反应就对应一个具体的常数值。

扩展资料:
化学平衡常数的意义
1、化学平衡常数值的大小是可逆反应进行程度的标志。它能够表示出可逆反应进行的完全程度。可以说,化学平衡常数是一定温度下一个反应本身固有的内在性质的定量体现。
2、一个反应的K值越大,说明平衡时生成物的浓度越大,反应物的浓度越小,正向反应进行程度越大,反应进行的越完全,反应物转化率也越大。反之亦然。一般当,K>105时,该反应进行得基本完全;K<10-5时,则该反应很难进行。
参考资料来源:百度百科—化学平衡常数

化学平衡常数(Kc、Kp、Ksp、Ka、Kb 、Kw)及其表达式

Kc是平衡浓度;Kp是平衡压强。这两个化学平衡常数是没有表达式的;
Ksp是沉淀溶解平衡常数,表达式即为等于离子浓度幂的乘积。例如Ksp(AgCl)=[Ag+][Cl-] ;
Ka是酸的电离平衡常数,表达式:Ka(HAc)=[H+][Ac-]/[HAc] ;
Kb是碱的电离平衡常数,表达式:Kb(OHAc)=[OH-]/[OHAc];
Kw是水的离子积常数,表达式:Kw=[H+][OH-] 。


扩展资料:
在书写平衡常数表达式时,要注意以下问题:
1、在应用平衡常数表达式时,稀溶液中的水分子浓度可不写。
2、在反应中,固体的物质的量浓度对反应速率和平衡没有影响,所以就不用写固体的浓度。
3、化学平衡常数表达式与化学方程式的书写方法有关。同一个化学反响,因为书写的方法不同,各反响物、生成物的化学计量数不同,平衡常数就不同。可是这些平衡常数可以彼此换算。
4、平衡常数大,说明生成物的平衡浓度较大,反应物的平衡浓度相对较小,即表明反应进行得较完全。
5、一般认为K>10^5反应较完全(即不可逆反应),K<10^(-5)反应很难进行(即不反应)。
参考资料:百度百科—化学平衡常数

关于化学势的计算方法

材料科学技术(一级学科);材料科学技术基础(二级学科);材料科学基础(三级学科);材料组织结构(四级学科)  都可以查到。 简单地说明一下 一种物质A被添加到另一种物质B中,混合物的自由能G可以表示为:   G= XAGA+ XBGB+ ΔGmix   其中:XA和XB分别为物质A、B的含量,GA 和GB分别为物质A、B的吉布斯自由能。   而 ΔGmix=ΔHmix- TΔSmix   对于理想固溶体而言,系统中两物质的体积以及内能均保持不变,因此焓变为零,即ΔHmix=0,统计热力学给出混合熵的公式为:   ΔSmix=-R(XAlnXA+ XBlnXB)   因此,混合后系统的吉布斯自由能为:   G = (GA + RT lnXA) XA + (GB +RT lnXB) XB   物质A、B的化学势uA, uB就分别等于:   uA = GA + RT lnXA   uB = GB + RT lnXB   因此,混合后系统的吉布斯自由能可以用化学势表示成:   G= uA XA + uB XB   从微分学理解,化学势就是吉布斯自由能对成分的偏微分   uA=(ΔG/ΔnA) T,P,nB=常数   所以,化学势又称为偏摩尔势能。 1摩尔化学纯物质的吉布斯函数,通常用符号μ表示。如以G表示热力学系统的吉布斯函数,n表示系统中物质的摩尔数,则   对于多元系,以ni表示第i组元的摩尔数,则第i组元的化学势μi表示在温度T、压强E及其他组元的摩尔数nj不变的条件下,每增加1摩尔i组元时,系统的吉布斯函数的增量:   化学势在处理相变和化学变化的问题时具有重要意义。   在相变过程中,由于物质在不同组元间的转移是在恒温和恒压下进行的,故可以通过比较两相中物质化学势的大小来判断物质在各组元间转移的方向和限度,即物质总是从化学势较高的相转移到化学势较低的相。当物质在两相中的化学势相等时,则相变过程停止,系统达到平衡态(见相和相变)。   以μ 和μ分别代表第i组元在α相和β相中的化学势,则当   时,第i组元物质即由α相进入β相。当   时,两相中第i组元物质达到平衡。可见,物质在两相中的化学势不同,是发生相变的条件。   对处在恒温和恒压条件下的化学反应,可用化学势来标志化学反应自发进行的方向。如果多元单相系的化学反应在温度和压强不变的情形下进行,系统的总吉布斯函数的改变是   式中Δni为反应中各组元摩尔数的改变量。平衡态的吉布斯函数最小,则有ΔG=0,即   一般情况,化学反应可以写成   式中Ai代表反应物类型(即组元),vi代表反应方程中反应物的系数。正系数指生成物,负系数指反应物。此时Δni,满足下面关系   式中ε为任意无穷小量。于是平衡条件可以写成   如果条件(4)不满足,则平衡不成立,于是发生反应。反应进行的方向必使吉布斯函数减少,即   由此可知,如果   则反应正向进行(ε>0);如果   则反应逆向进行(ε﹤0)。由于μi在决定化学反应进行方向上的作用,故称它为化学势。   为什么生物系统中化学势可以用亥姆霍兹自由能? 化学势就是吉布斯自由能对成分的偏微分,化学势又称为偏摩尔势能。偏摩尔量都是系统的强度性质,强度性质在物理化学中也常可以写成偏微商的形式,比如温度T=dE/dS。若在恒压下将分子依次加入系统,为驱动其中每一个分子,需要完全相同的努力,此过程体积变大而系统的密度和压强保持不变,这样单个分子的热力学状态可以用吉布斯自由能G除以分子数N来恰当描述:μ=G/N,式中μ为化学势,N为分子的摩尔数。在低压下,液体或固体中或生物系统中,亥姆霍兹自由能F≈G,故μ≈F/N。

乙烯、乙醇、乙醛、乙酸相互转化的化学方程式!条件一定要注明!

乙烯在一定条件下转化为乙醇,这里采用乙烯水化法:CH2=CH2 + H2O → CH3CH2OH ,反应条件催化剂,这是一个加成反应。
乙醇在一定条件下转化为乙醛:2CH3CH2OH + O2 → 2CH3CHO + 2H2O (条件,Cu,加热) 氧化反应乙醛转化为乙酸。
2CH3CHO + O2 → 2CH3COOH 氧化反应。

扩展资料:
乙醇的物理性质:
乙醇液体密度是0.789g/cm³,乙醇气体密度为1.59kg/m³,相对密度(d15.56)0.816,式量(相对分子质量)为46.07g/mol。沸点是78.2℃,14℃闭口闪点,熔点是-114.3℃。纯乙醇是无色透明的液体,有特殊香味,易挥发。
乙醇的物理性质主要与其低碳直链醇的性质有关。分子中的羟基可以形成氢键,因此乙醇黏性大,也不及相近相对分子质量的有机化合物极性大。
20℃下,乙醇的折射率为1.3611。
溶解性,能与水以任意比互溶;可混溶于醚、氯仿、甲醇、丙酮、甘油等多数有机溶剂。
潮解性,由于存在氢键,乙醇具有较强的潮解性,可以很快从空气中吸收水分。
乙醇的化学性质:
酸碱性:
弱酸性(严格说不具酸性,不能使酸碱指示剂变色,也不能与碱发生化学反应),因含有极性的氧氢键,故电离时会生成烷氧基负离子和质子。其化学反应式为:



还原性:
乙醇具有还原性,可以被氧化成为乙醛。

乙醇也可被高锰酸钾氧化成乙酸,同时高锰酸钾由紫红色变为无色。
脱水反应:
乙醇可以在浓硫酸和高温的催化发生脱水反应,随着温度的不同生成物也不同。
参考资料来源:搜狗百科-乙醇

什么是题录?在中国知网上怎么样找出文献的题录?急!求高人解答

题录就是文献的题名,作者,年份,卷期页码有时候包括摘要等信息,中国知网找到文献,然后方框内打勾,选择导出,就可以用参考文献格式等,导出这篇文献的题录信息

数字媒体技术考研能选择哪些学校

数字媒体技术专业在很多高校都有设立,考研选择以下学校:
1、中国传媒大学,中国传媒大学的数字媒体技术非常强,学科评估为A,每年考研人数都非常多,压力较大,适合想考一个好学校的考生。
2、北京邮电大学,北京邮电大学的数字媒体技术专业是单独成为一个院的,综合实力强,是众多考生的考研目标之一。

3、浙江大学,浙江大学的数字媒体技术专业是全国最早创立的,拥有者非常高的知名度,同中国传媒大学一样也是一所不错的数字媒体技术专业学生的梦想大学。
4、北京工业大学,在考北京工业大学的数字媒体技术专业时面临的竞争压力较小,而且学校的实力比较好,适合不那么注重专业的考生。
5、西安理工大学,相比上面的大学虽然专业优势不足,但是在毕业之后该校的就业率非常高,适合将来找工作的考生。
参考资料:搜狗百科-数字媒体技术

相关推荐: