导航菜单
首页 >  » 正文

考研高数用谁的视频比较好? 考研数学老师张宇个人资料

考研高数用谁的视频比较好?

启道教育君觉得张宇的视频就不错。主要原因:
1讲的比较细,能把知识点给你串起来,当然了需要你课后自己也串一串、
2他的题集难度和2016年考研数学相当,所以你只要能把他的习题做会,思路理清,计算量跟上,考个130+不成问题的。
3当然了看视频只是帮你把知识点理清一遍,还要对做真题,回归真题,最好准备一个错题本,能够回顾自己的错误、

考研数学老师张宇个人资料

张宇目前在启航,从事高等数学教学和考研辅导多年。国家高等数学试题库骨干专家、考研历年真题研究骨干专家、博士、教育部国家精品课程建设骨干教师。多次参加考研数学大纲修订及全国性数学考试组卷工作,在全国核心期刊发表论文多篇,一篇入选“2007年全球可持续发展大会”,并发表15分钟主旨演讲。

拓展资料:
1. 授课科目:高数、线代、概率
2. 学术背景:教授,教育部国家精品课程建设骨干教师。在全国核心期刊发表论文多篇,一篇入选“2007年全球可持续发展大会”,并发表15分钟主旨演讲。
3. 辅导资历:从事高等数学教学和考研辅导多年,国家高等数学试题库骨干专家,多次参加考研数学大纲修订及全国性数学考试组卷工作。考研历年真题研究骨干专家。
4. 教学方法:首创“题源教学法”,透析经典错误一针见血,对学生在高数上存在的弱点了如指掌,使得他的考研辅导针对性强,切题率高,效果显著。
5. 辅导佳绩:对考研数学的知识结构和体系全新的解读,对考研数学的出题与复习思路有极强的把握和预测能力。主编的《高数18讲》、《线代9讲》、《概率9讲》被考生誉为考研参考书中的精品。

考研数学二大纲对应《高等数学》和《线性代数》哪几章?

教材不同,对应第几章也是不同的。主要内容为:
高等数学:
函数、极限、连续 一元函数微分学 一元函数积分学  
多元函数微积分学(包含二重积分) 常微分方程
线性代数:
行列式 矩阵 向量 线性方程组
矩阵的特征值和特征向量 二次型
详细大纲如下,请认真研读。
2011年考研数学二大纲
考试科目
  高等数学、线性代数
考试形式和试卷结构
  1、试卷满分及考试时间
  试卷满分为150分,考试时间为180分钟。
  2、答题方式
  答题方式为闭卷、笔试。
  3、试卷内容结构
  高等数学 78%
  线性代数 22%
  4、试卷题型结构
  试卷题型结构为:
  单项选择题选题 8小题,每题4分,共32分
  填空题 6小题,每题4分,共24分
  解答题(包括证明题) 9小题,共94分
考试内容之高等数学
  函数、极限、连续
  考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
  函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
  考试要求
  1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
  2. 了解函数的有界性、单调性、周期性和奇偶性.
  3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念
  4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.
  5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
  6. 掌握极限的性质及四则运算法则
  7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
  8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
  9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
  10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
  一元函数微分学
  考试要求
  1. 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
  2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
  3. 了解高阶导数的概念,会求简单函数的高阶导数.
  4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
  5. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.
  6. 掌握用洛必达法刚求未定式极限的方法.
  7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.
  8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当 f(x)>=0时,f(x)的图形是凹的;当f(x)<=0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
  9. 了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.
  一元函数积分学
  考试内容:原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分 定积分的应用
  考试要求
  1. 理解原函数的概念,理解不定积分和定积分的概念.
  2. 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
  3. 会求有理函数、三角函数有理式和简单无理函数的积分.
  4. 理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.
  5. 了解反常积分的概念,会计算反常积分.
  6. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.
  多元函数微积分学
  考试要求
  1. 了解多元函数的概念,了解二元函数的几何意义.
  2. 了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.
  3. 了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.
  4. 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并求解一些简单的应用问题.
  5. 了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).
  常微分方程
  考试内容:常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用
  考试要求
  1. 了解微分方程及其阶、解、通解、初始条件和特解等概念.
  2. 掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程
  3. 会用降阶法解下列形式的微分方程: , 和 .
  4. 理解二阶线性微分方程解的性质及解的结构定理.
  5. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
  6. 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.
  7. 会用微分方程解决一些简单的应用问题.
考试内容之线性代数
  行列式
  考试内容:行列式的概念和基本性质 行列式按行(列)展开定理
  考试要求
  1.了解行列式的概念,掌握行列式的性质.
  2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
  矩阵
  考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价分块矩阵及其运算
  考试要求
  1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.
  2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
  3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
  4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.
  向量
  考试内容:向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法
  考试要求
  1.理解n维向量、向量的线性组合与线性表示的概念.
  2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
  3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
  4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系
  5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
  线性方程组
  考试内容:线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解
  考试要求
  1.会用克莱姆法则.
  2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
  3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法.
  4.理解非齐次线性方程组的解的结构及通解的概念.
  5.会用初等行变换求解线性方程组.
  矩阵的特征值和特征向量
  考试内容:矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵
  考试要求
  1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.
  2.理解矩阵相似的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.
  3.理解实对称矩阵的特征值和特征向量的性质.
  二次型
  考试内容:二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
  考试要求
  1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.
  2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.
  3.理解正定二次型、正定矩阵的概念,并掌握其判别法.

考研中高等数学601考什么?

1. 一般认为高数301为高教版高等数学一,是考研中最难的数学,包括高数、线代和数理统计高数302为高教版高数二,包含高数的部分和线代.还有一个高数361,代表的是同济版的高等数学,难度和高教版差不多,侧重方向不同.
2. 高等数学601强军计划的研究生。602高等数学(高等数学一般是指微积分)是学校自命题,要与学校联系,看考试范围.

考研高数二考方向导数与梯度吗?

考研数二不考方向导数与梯度。
考研数二一元函数微分的考试要求:
1、理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系;
2、掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分;
3、了解高阶导数的概念,会求简单函数的高阶导数;
4、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数;
5、理解并会用罗尔定理(Rolle)、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理;
6、掌握用洛必达法则求未定式极限的方法;
7、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用;
8、会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当 f(x)>=0时,f(x)的图形是凹的;当f(x)<=0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形;
9、了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径。

扩展资料:
常考题型有:
1、导数的定义、导数的计算、切线与法线、单调性及其应用、极值与拐点、函数最值的讨论;
2、函数与其导函数性质的关系、高阶导数的计算、罗尔定理、拉格朗日中值定理和柯西中值定理等等。
参考资料来源:搜狗百科-考研数学二大纲
参考资料来源:研招网-2019考研数学一二三公共考点:重难点汇总(下)
参考资料来源:研招网-2019考研数学一二三公共考点:重难点汇总(上)

请问考研高数2在高数书上哪些是不需要去看的

高数同济四版: (带星号不考)
上册:打星号的不考,第二章第八节不考,第三章第十节不考,第五章第六节不考,第七章不考,其他都考
下册:打星号的不考,第八章第六、七节不考,第九章第三、四、五节不考,第十章,第十一章不考,第十二章5,6,11,12,13节不考
总的来说,上册考的多下册只考三章,而且不是全考,但微分方程比较繁
线代:1-5章全考,第六章不考
1.曲面和曲线积分不考
2.空间解析几何不考
3.级数不考
3.三重几分不考
相对来说数一这些都会考的。

考研601数学是什么

这个考试科目代码,常在考研科目中出现。一般认为高数301为高教版高等数学一,是考研中最难的数学,包括高数、线代和数理统计高数302为高教版高数二,包含高数的部分和线代还有一个高数361吧,代表的是同济版的高等数学,难度和高教版差不多,侧重方向不同高等数学601强军计划的研究生。。。。602高等数学(高等数学一般是指微积分)是学校自命题,要与学校联系,看考试范围数学一:包含线代,高数,概率。适用的学科为:1.工学门类的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科、专业. 2.工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业. 3.管理学门类中的管理科学与工程一级学科按此划分,绝大多数院校的计算机专业都会选择考数学一,这也是从事计算机所必须的最低数学功底。数学二:包含线代,高数。适用的学科为:1.工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等一级学科中所有的二级学科、专业. 2.工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较低的二级学科、专业. 数学三:常被称为经济数学,包含线代,概率,高数。适用学科为:1.经济学门类的应用经济学一级学科中统计学、数量经济学二级学科、专业. 2.管理学门类的工商管理一级学科中企业管理、技术经济及管理二级学科、专业. 3.管理学门类的农林经济管理一级学科中对数学要求较高的二级学科、专业

考研数学二考课本哪几章

数学二的考试内容为高等数学、线性代数
形式结构
1、试卷满分及考试时间
试卷满分为150分,考试时间为180分钟。
2、答题方式
答题方式为闭卷、笔试。
3、试卷内容结构
高等数学 78%
线性代数  22%
4、试卷题型结构
试卷题型结构为:
单项选择题选题 8小题,每题4分,共32分
填空题 6小题,每题4分,共24分
解答题(包括证明题) 9小题,共94分

中山大学考研 高等数学B考的范围是多少?

关于中山大学高等数学(B) 相信看过历年真题的同学都知道,中大的数B较之全国统考及其他学校的数学是相对简单的,经过大半年扎扎实实的复习,考取130分左右的分数应该是毫无压力的,总之为中大的数学准备比为专业课准备容易多了,所以能考数学的同学尽量选择考数学。。。
本人是13年的考生,报考的中大要考数B的某专业,过去一年的复习中一直有位中大的在校高分研究生在学习上帮助我,我本人本科期间也获得过一次国奖,两次国家励志,自认为有一定的学习方法,这里就我及师兄共同的学习经验和方法与大家分享一下:
1 、关于教材:建议使用高等数学同济第六版及配套解析,概率论与数理统计浙大第四版及配套解析
2、关于考纲:中大研招网上是找不见考纲的,只有从历年真题中自己分析出来,这里我帮大家分析了从2005-2012的考试范围及重点:
2.1 高等数学在数B中每年占110分左右,毫无疑问是重点,以同济第六版为例,上册中除第六章外都是重点,下册第八章简单掌握即可,近四年都没从该章出考题,另外第十一章也从未考过,为高数做准备,首先必须认认真真把教材看懂,包括例题,不要放过任何细节,更不要抱有侥幸心里认为这个可能不会考;其次每一小节后的习题及每章的总习题一定要认真做,每一道都要做会,真题中有不少题就来自这些习题或演变自这些习题;再者,不会的题一定要看解析,把每道弄懂,解析中每一节的例题及每一章节的自测题也要会做,准备中大的数B其他资料参考价值不大,大家一定要把这3本书利用好,吃透它们,在考场上绝对游刃有余
2.2 概率论与数理统计我用的浙大第四版及配套解析,大家也可以根据情况选用不同的教材,我就以浙大第四版为例,第一章简单了解即可,第二、三、四章都是重点,每年10分左右的填空题几乎全出自这几章,建议把教材中的题全做一遍,第五、六章到目前为止从未考过,第七、八章是重点中的重点,每年30分左右的大题就来自这两章
3、关于2013年的真题,13年的题较之以前的变动稍大,首先填空题出得非常简单,很多同学10分钟之内就能做完,并且能保证全对,解答题第一道颠覆了以往求导数的惯例,一来就是一道证明题,需用到高数第一章第十节及第三章第一节的几个定理;第二个大题仍然是一道证明题,与高数上册P154.15题类似,关键是第三道大题,题相当简单,但是知识点是史上第一次考,考的是将函数展开成幂级数,与高数下P283.例五类似,另外,概率论的大题中考了一个求单侧置信上下限,参见浙大第四版教材第七章第七节,其他几个大题考的比较常规和简单,不再赘述
4 、关于真题,2005-2012年的真题大家可以在中大研招网上去下载,也可以找我免费传给你们,2013年的真题会在今年9月份左右挂在中大研招网上,影响不大,大家按自己的进度复习即可
更多中大数B信息可加我qq:1643691008

相关推荐: