导航菜单
首页 >  » 正文

824材料力学是什么意思 材料力学的三个基本假设是什么?

824材料力学是什么意思

研究生考试报名时专业课都有一个科目代码,部分学校材料力学的科目代码为824。
材料力学考试大纲(河海大学,仅供参考)
内容范围或要点:
(1)基本概念
  材料力学的任务、基本假设、杆件的变形形式、内力、应力、位移、应变。
(2)轴向拉压
  轴力、轴力图、横截面上的正应力、应力集中、拉压变形、拉压时材料的力学性质、拉压杆的强度计算、拉压超静定问题。
(3)扭转
  扭矩、扭矩图、横截面上的切应力、扭转变形、扭转超静定、扭转时材料的力学性质、扭转圆杆强度刚度计算、非圆截面杆的扭转。
(4)弯曲
  剪力、弯矩及内力图、内力方程、梁横截面上的正应力和切应力、梁的强度计算、非对称弯曲梁的正应力、开口薄壁梁的切应力、弯曲中心。梁的挠度和转角、梁的变形、刚度计算、简单超静定梁。
(5)应力状态
  平面应力状态分析、基本变形杆件的应力状态分析、三向应力状态分析、广义胡克定律。
(6)强度理论
  强度理论的概念、四种常用的强度理论、莫尔强度理论、强度理论的应用。
(7)组合变形
  斜弯曲、拉弯组合变形、偏心压缩、截面核心、弯扭组合变形。
(8)连接强度计算
  铆钉连接、铆钉群连接。
(9)压杆稳定
  稳定的概念、细长压杆的临界力、柔度、非弹性失稳、压杆的稳定计算、纵横弯曲。 (10)能量法
  杆件的弹性应变能、卡氏定理、莫尔定理。
(11)动荷与交变应力
  构件匀加速运动时的应力、构件受冲击时的动应力和动变形。交变应力和疲劳破坏。

材料力学的三个基本假设是什么?

固体因受外力作用而变形,故称为变形固体。为便于对变形固体制成的构件进行理论分析,通常略去一些次要因素,根据变形固体的主要性质作如下假设。
1、连续性假设:假设组成固体的物质是密实的、连续的。微观上,组成固体的粒子之间存在空隙并不连续,但是这种空隙与构件的尺寸相比极其微小,可以忽略不计。于是可以认为固体在其整个体积内是连续的。这样,可以把力学量表示为固体点的坐标的连续函数,应用一般的数学分析方法。
2、均匀性假设:材料在外力作用下所表现的性能,称为材料的力学性能。在材料力学中,假设在固体内到处都有相同的力学性能。就金属而言,组成金属的各晶粒的力学性能并不完全相同。但因构件中包含为数极多的晶粒,而且杂乱无序地排列,固体各部分(宏观)的力学性能,实际上是微观性能的统计平均值,所以可以认为各部分的力学性能是均匀的。按此假设,从构件内部任何部位所切取的微小体积,都具有与构件相同的性能。3、各向同性假设:假设沿任何方向固体的力学性能都是相同的。就单一的金属晶粒来说,沿不同方向性能并不完全相同。因为金属构件包含数量极多的杂乱无序地排列的晶粒,这样,宏观上沿各个方向的性能就接近相同了。具有这种属性的材料称为各向同性材料。也有些材料沿不同方向性能不相同,如木材和复合材料等。这类材料称为各向异性材料。
实践证明,对于大多数常用的结构材料,如钢铁、有色金属和混凝土等,上述连续、均匀和各向同性假设是符合实际的、合理的。
4、小变形:固体在外力作用下将产生变形。实际构件的变形以及由变形引起的位移与构件的原始尺寸相比甚为微小。这样,在研究构件的平衡和运动时,仍可按构件的原始尺寸进行计算。同时,由于变形微小,在需要考虑变形时,也可以加以某些简化。
工程中,绝大多数物体的变形被限制在弹性范围内,即当外加载荷消除后,物体的变形随之消失,这种变形称为弹性变形,相应的物体称为弹性体。
综上所述,在材料力学中,通常把实际构件看作连续、均匀和各向同性的变形固体,且在大多数场合下局限于研究弹性小变形情况。

材料力学中的内力是

材料力学中的内力是指构件在外力作用下、由于变形而在杆件内部各部分之间产生的相互作用的附加内力。
在没有外力作用的情况下,其内部各质点之间均处于平衡状态,如物体内部原子与原子之间或者分子与分子之间既有吸引力又有排斥力,两种力是一种平衡力;这种平衡力能够使各质点之间保持一定的相对位置,从而使物体维持一定的几何形状。
由此可见,一个完全不受外力作用的物体也是具有内力的。
当物体受外力作用发生变形时,内部质点间的相对距离发生了改变,从而引起内力的改变,内力的改变量是一种“附加内力”,“附加内力”和外力的大小相等但方向相反,用来抵抗因外力作用引起的物体形状和尺寸的改变,并力图使物体回复到变形前的状态和位置。

扩展资料
在一个力学系统内部相互作用的力叫“内力”,这个力学系统与外部物体相互作的力叫“外力”。所谓力学系统,是指具体研究的对象。
如研究人体空翻技术时,把整个人体作为一个力学系统;研究掷链球旋转技术时,把人体和链球作为一个力学系统。
因随研究的具体对象而变化,故内力和外力的具体内容也不同。如掷链球时,把手拉链球的力作为内力,而在研究链球飞行的抛物线轨迹时,链球飞行的初速度则为由人手的外力所提供。
习惯上,也有把人体作为一个力学系统的。体内的肌力,骨、韧带、关节、筋膜等组织力是人体的内力;重力、摩擦力、地面支撑的反作用力和空气中的浮力、阻力等则是人体的外力。
参考资料来源:搜狗百科-内力

材料力学σb σp σs σcr 分别代表什么

σb、σp、σs、是材料力学中应力-应变曲线的常用符号,其中σb表示抗拉强度,σp表示比例极限,σs表示屈服极限。而σcr多用在材料力学压杆稳定问题中,代表压杆的临界压力。
1、抗拉强度,是金属由均匀塑性形变向局部集中塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载能力,抗拉强度反映了材料的断裂抗力。
2、比例极限,在材料弹性变形阶段,应力一应变呈线性关系,材料处于弹性阶段。但由于比例极限很难测定,所以常采用发生很微小的塑性变形量的应力值来表示,称为规定比例极限,用σp表示。
3、屈服极限,是金属材料发生屈服现象时的屈服强度,也就是抵抗微量塑性变形的应力。对于无明显屈服现象出现的金属材料,规定以产生0.2%残余变形的应力值作为其屈服极限,称为条件屈服极限或屈服强度。大于屈服强度的外力作用,将会使零件永久失效,无法恢复。
4、压杆的临界压力,在压杆问题中,当轴向应力P增加到一定程度P(小于许压应力)时,压杆的直线平衡状态开始失去稳定,产生弯曲变形,这个力具有临界的性质,因此称为临界力。临界力大小与杆件的材料、长度、截面形状尺寸以及杆端的约束情况有关。

扩展资料:
除以上符号外,材料力学其他性能符号及意义:
1、拉伸弹性模量E: 拉伸实验时,材料在弹性变形阶段内,正应力和对应的正应变的比值。
2、剪切弹性模量G: 扭转实验时,材料在弹性变形阶段内,正应力和对应的正应变的比值。
3、疲劳极限σ-1:在疲劳试验中,应力交变循环大至无限次而试样仍不破损时的最大应力
4、疲劳强度σN:在规定的循环应力幅值和大量重复次数下,材料所能承受的最大交变应力
5、伸长率δ:指金属材料受外力(拉力)作用断裂时,试棒伸长的长度与原来长度的百分比,伸长率按试棒长度的不同分为:短试棒求得的伸长率,代号为δ5,试棒的标距等于5倍直径长试棒求得的伸长率
6、断面收缩率ψ:材料受拉力断裂时断面缩小,断面缩小的面积与原面积之比值叫断面收缩率,以ψ表示。单位为%。
7、冲击韧度αk:冲击韧度是材料抵抗冲击载荷的能力。一般用αk表示,单位为J/M。
参考资料来源:百度百科—应力应变曲线
参考资料来源:百度百科—抗拉强度
参考资料来源:百度百科—屈服极限
参考资料来源:百度百科—临界力
参考资料来源:百度百科—拉伸实验

结构力学和材料力学那个难学点 (针对考研)

材料力学是研究单个杆件受力的情况是,主要是静定单个杆件的轴力、扭矩、弯矩、稳定性的问题,是结构受力分析基础的基础,其他的结构力学、土力学、混凝土结构、钢结构等等都是以材料力学为基础的。 结构力学是研究杆件组合体系的问题的,也就是说多个杆件的,比如钢架、桁架等,还有超静定结构的内力、影响线、动荷载等等,也是属于基础力学的范畴,是桥梁工程、墩台基础工程、结构课程的基础课程。 在正常学习期间,给人的感觉是材力比结力好学,因为材力是研究静定结构的,用的数学方法也都是通常的方法,而结力就较为难些,因为结力学好了才能学好结力,而且结力用的数学方法较多,设计到线性代数方面的知识。 但是针对考研的话,因为材料力学对于整个土木上来说,重要性要偏大于结构力学,所以考研试题上的难度不比结构力学简单,有的学校考研要求专业课材料力学与结构力学都考,比如同济大学,材力占多部分分,而结力占少部分分;有的学校只要求考材料力学,而在复试的时候才考结构力学。 所以你要是以前没有学过这两门课程的话,肯定是材力好学了,因为材力的基础只是稍微牵扯到一些高数与理论力学的知识,而结构力学就是以材料力学为基础的了,材料力学不会结构力学是不可能学会的。 而你要是都学过的话,就看你要考的学校的考试形式了,它的考试形式就决定了这两门考试的难度。

材料力学如何找危险截面和危险点?

对于每一种基本变形,我们的研究目的,都是为了找到杆件上最危险点的应力,然后把此应力与允许应力相比较,从而来进行设计或者校核。
简单变形的强度问题,总是分为四个步骤:
第一步,计算出整根构件的外力。这就是外力分析。外力分析实际上是理论力学的静力学部分,它要求对一个平衡状态的杆件,基于其受力平衡而计算出杆件的约束力。
第二步,计算出整根杆件的内力。我们基于截面法,计算出杆件上每个截面的内力,从而绘制出内力图。对于拉伸,是轴力图;对于扭转,是扭矩图;对于弯曲,是剪力图和弯矩图。而剪切,因为只有一个截面,谈不上画内力图的问题。绘制内力图后,我们从图形上,可以非常直观的看到内力在截面上如何分布的,从而可以看到那些内力较大的截面在哪里,这些截面就是危险截面。绘制内力图的终极目的,就是为了找到危险截面。

测定材料的力学性能有何实用价值?

在实际使用的过程中对于材料的力学负荷不能超过其本身的力学性能,否则会出现材料失效 比如断裂等事故情况。因此测定材料的力学性能能够帮助人们在实际使用材料的过程中,针对可能出现的力学负荷选择合适的材料。

考研801材料力学各个学校都一样吗

各个学校在本科教育阶段会选择不同的教材,有的高教社版本,有的清华大学版本。所以你报考的学校使用了什么版本的教材,那么801考试的题目就会有不同的区别。

相关推荐: