数学建模论文包括哪些内容?
全国大学生数学建模竞赛论文格式规范
本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。
论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。
论文第一页为承诺书,具体内容和格式见本规范第二页。
论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。
论文题目和摘要写在论文第三页上,从第四页开始是论文正文。
论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。
论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。
论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。
提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。
引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:
[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:
[编号] 作者,资源标题,网址,访问时间(年月日)。
在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。
本规范的解释权属于全国大学生数学建模竞赛组委会。
[注]
赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。
全国大学生数学建模竞赛组委会
2009年3月16日修订
数学建模论文一般结构
1摘要 (单独成页)
主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)
作用:了解文件重要性,对文件有大致认识
最佳页副:页面2/3。
2、问题重述和分析
3、问题假设
假设是建模的基础,具有导向性,容易被忽视。常犯错误有缺少假设或假设不切实际。对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定。
作假设的两个原则:
① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理。
② 贴近原则:贴近实际。
以上两个原则是相互制约的,要掌握好“度”。通常是先建模后假设。
4、符号说明 (3.4可以合并)
5、模型建立与求解(重要程度 :60%以上)
6、模型检验(误差一般指均方误差)
7、结果分析 (6.7可以合并)
8、模型的进一步讨论 或 模型的推广
9、模型优缺点
10、参考文件
11、附件(结果千万不能放在附件中)
论文最佳页面数:15-21页
论文结构一
题目
摘要
1.问题的重述
2.合理假设
3.符号约定
4.问题的分析
5.模型的建立与求解
6.模型的评价与推广
1、误差分析
2、模型的改进与推广
对XXXX切实可行的建议和意见:
1.……
2.……
……
7.参考文献
8.附录
数学建模论文一般格式
摘要
(主要理解、主要方法、主要结果、主要特点)
或(背景、目标、方法、结果、结论、建议)
问题重述与分析
问题假设
符号说明
模型建立与求解
模型检验
结果分析
模型的进一步讨论
模型优缺点
优秀论文要点:
1. 语言精练、有逻辑性、书写有条理
2. 文字与图形相结合,使内容直观、清晰、明了、容易理解
3. 切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章
4. 对论文中所引用或用到的知识、软件要清晰地予以说明。
5. 在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去
各步骤解释
摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)
作用:了解文件重要性,对文件有大致认识
最佳页副:页面2/3
问题重述与分析: 一向导、对题意的理解、
建模的创造性
创造性是灵魂,文章要有闪光点。
好创意、好想法应当既在人意料之外,又在人
意料之中。
新颖性(独特性)与合理性皆备。
误区之一:数学用得越高深,越有创造性。
解决问题是第一原则,最合适的方法是最好的方法。
误区之二:创造性主要体现在建模与求解上。
创造性可以体现在建模的各个环节上,并且可以有多种表现形式。
误区之三:好创意来自于灵感,可遇不可求。
好创意来自于对数学方法的掌握程度与对问题理解的透彻程度。
表达的清晰性
好的文章 = 好的内容 + 好的表达
替读者着想。该交代的要交代,如对题目的理解,关键指标或参数的引入,建模的思路,结果的分析等。
写好摘要,包括:建模主要方法、主要结果,模型主要优点。
专人负责写作,及早动手。考虑写作的过程也是构思框架、理清思路的过程,有利于从总体上把握建模的思路,反过来促进建模。
适当采用图表,增加可读性。
数学建模论文问题分析怎么写啊?
你好,我做了两年数学建模了。
论文的问题分析主要是写这个问题你们怎么看待,你们有什么思路,有什么想法,简单概述一下你们用了哪些模型(不能过于详细,因为还有模型建立部分)以及怎么想到这些模型,尽量别在问题分析里面得出结果(这是因为你们分析过程不会得到结果的)。
其实你们也可以把摘要扩充开来写,这样也是可以的,但是不是很好。
祝楼主好运
数学建模中用什么方法进行分级
一、定义 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。 数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 二、数学建模的几个过程 模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。 模型分析:对所得的结果进行数学上的分析。 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。 模型应用:应用方式因问题的性质和建模的目的而异。
数学建模要做哪些准备,基础的知识要那些,请具体点
参加数学建模竞赛是不是需要学习很多知识?
没有必要很系统的学很多数学知识,这是时间和精力不允许的。很多优秀的论文,其高明之处并不是用了多少数学知识,而是思维比较全面、贴合实际、能解决问题或是有所创新。有时候,在论文中可能碰见一些没有学过的知识,怎么办?现学现用,在优秀论文中用过的数学知识就是最有可能在数学建模竞赛中用到的,你当然有必要去翻一翻。
具体说来,大概有以下这三个方面:
第一方面:数学知识的应用能力
归结起来大体上有以下几类:
1)概率与数理统计
2)统筹与线轴规划
3)微分方程;
还有与计算机知识交叉的知识:计算机模拟。
上述的内容有些同学完全没有学过,也有些同学只学过一点概率与数理统计,微分方程的知识怎么办呢?一个词“自学”,我曾听到过数模评卷的负责教师范毅说过“能用最简单浅易的数学方法解决了别人用高深理论才能解决的答卷是更优秀的答卷”。
第二方面:计算机的运用能力
一般来说凡参加过数模竞赛的同学都能熟练地应用字处理软件“Word”,掌握电子表格“Excel”的使用;“Mathematica”软件的使用,最好还具备语言能力。这些知识大部分都是学生自己利用课余时间学习的。
第三方面:论文的写作能力
前面已经说过考卷的全文是论文式的,文章的书写有比较严格的格式。要清楚地表达自己的想法并不容易,有时一个问题没说清楚就又说另一个问题了。评卷的教师们有一个共识,一篇文章用10来分钟阅读仍然没有引起兴趣的话,这一遍文章就很有可能被打入冷宫了。
数学建模三天时间怎么安排
首先 要选题 这需要5小时左右 之后围绕这个题目进行讨论 大家都发表对这个问题的看法及思路 3人分工进行讨论 大部分时间都在想思路上
数学建模 选课问题
这个题在高中的信息学奥林匹克竞赛(OI)中有解决的方法
别的地方相同的问题要求选的课是有顺序的,要先修哪个后修哪个,你这个问题是无序的。
1.你可以参照最小费用最大流算法适当地进行建模。(实在不懂你语言)
2.可能可以使用树型动态规划算法,拓扑建树,转为二叉树,进行树型DP.
3.使用多次背包算法,先把给出的图用拓扑排序算法构建成树,在树里面的每个结点使用背包算法,计算出当前点以下用一定时间能得到的最大学分,多个背包向父亲结点背包。
考研数学三,零基础,大三,需要多久复习时间呢?现在开始复习来得及吗?
我是研一的,考研数学133,数学基础也不好,数三比数一简单些,你如果对自己数学没信心的话,建议还是早些,大三上学期有时间就开始看课本吧,先把基础打好,把书上的内容先了解了,课后题最好都做一下,如果你底子不好的话,放在大三下学期怕你时间来不及,数学复习的东西多,但考的其实也不多,很多内容你复习了也不一定考,但作为打基础,开始复习最好还是全面复习,上学期能把高数上册复习完就不错了,毕竟你还要上课,下学期复习下册,以及线性代数和概率论,争取放暑假前把课本及习题都过一遍,暑假开始后就开始看复习全书吧,基本2个多月可以做完,这样下来你的数学底子应该已经很好了,当然以后还要做许多题:李永乐600题、400题、135题以及真题等,到时候就是看你的底子打得怎么样了,建议李永乐600题、400题一定好好做,我估计你把我说的都做了,考个130+应该没问题的。最后要说明一点:考研和你的底子没有太大关系,关键是认真复习所付出的时间和精力。先说这么多,还有疑问可留言继续提问。
雅思零基础学习需要多久达到6分
每个人情况不一定,有的人学习能力强花的时间就少,有的人学习能力差一下花的时间就要更多,如果是全退产学习从零基础到雅思6分的水平至少也要6-8个月