导航菜单
首页 >  » 正文

微分方程的特解怎么求 求 ∫ 1/x²(1+x²) 的不定积分

微分方程的特解怎么求

二次非齐次微分方程的一般解法

一般式是这样的ay+by+cy=f(x)

第一步:求特征根

令ar²+br+c=0,解得r1和r2两个值,(这里可以是复数,例如(βi)²=-β²)

第二步:通解

1、若r1≠r2,则y=C1*e^(r1*x)+C2*e^(r2*x)

2、若r1=r2,则y=(C1+C2x)*e^(r1*x)

3、若r1,2=α±βi,则y=e^(αx)*(C1cosβx+C2sinβx)

第三步:特解

f(x)的形式是e^(λx)*P(x)型,(注:P(x)是关于x的多项式,且λ经常为0) 则y*=x^k*Q(x)*e^(λx) (注:Q(x)是和P(x)同样形式的多项式,例如P(x)是x²+2x,则设Q(x)为ax²+bx+c,abc都是待定系数)

1、若λ不是特征根 k=0 y*=Q(x)*e^(λx)

2、若λ是单根 k=1 y*=x*Q(x)*e^(λx)

3、若λ是二重根 k=2 y*=x²*Q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)

f(x)的形式是e^(λx)*P(x)cosβx或e^(λx)*P(x)sinβx

1、若α+βi不是特征根,y*=e^λx*Q(x)(Acosβx+Bsinβx)

2、若α+βi是特征根,y*=e^λx*x*Q(x)(Acosβx+Bsinβx)(注:AB都是待定系数)

第四步:解特解系数

把特解的y*,y*,y*都解出来带回原方程,对照系数解出待定系数。 最后结果就是y=通解+特解。 通解的系数C1,C2是任意常数。

拓展资料:

微分方程

微分方程指描述未知函数的导数与自变量之间的关系的方程。微分方程的解是一个符合方程的函数。而在初等数学的代数方程,其解是常数值。

高数常用微分表

唯一性

存在定一微分程及约束条件,判断其解是否存在。唯一性是指在上述条件下,是否只存在一个解。针对常微分方程的初值问题,皮亚诺存在性定理可判别解的存在性,柯西-利普希茨定理则可以判别解的存在性及唯一性。针对偏微分方程,柯西-克瓦列夫斯基定理可以判别解的存在性及唯一性。 皮亚诺存在性定理可以判断常微分方程初值问题的解是否存在。

求 ∫ 1/x²(1+x²) 的不定积分

∫1/x(x²+1)dx 
=∫1/x-x/(x²+1)dx 
=∫1/xdx-∫x/(x²+1)dx 
=ln|x|-1/2ln|x²+1|+c
扩展资料:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
求不定积分的方法:
1、换元积分法:
可分为第一类换元法与第二类换元法。
第一类换元法(即凑微分法)
第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。
2、分部积分法
公式:∫udv=uv-∫vdu
(uv)=uv+uv
得:uv=(uv)-uv
两边积分得:∫ uv dx=∫ (uv) dx - ∫ uv dx
即:∫ uv dx = uv - ∫ uv dx,这就是分部积分公式
也可简写为:∫ v du = uv - ∫ u dv

分别写出第一二三四象限角的集合

解:(1)用角度表示
第一象限角:{x∣2k×360°<x<2k×360°+90°} (k∈Z)
第二象限角:{x∣2k×360°+90°<x<2k×360°+180°}(k∈Z)
第三象限角:{x∣2k×360°+180°<x<2k×360°+270°}(k∈Z)
第四象限角:{x∣2k×360°+270°<x<(2k+1)×360°}(k∈Z)
(2)用弧度来表示
第一象限角:{x∣2k∏<x<2k∏+∏/2} (k∈Z)
第二象限角:{x∣2k∏+∏/2<x<(2k+1)∏}(k∈Z)
第三象限角:{x∣(2k+1)∏<x<2k∏+3∏/2}(k∈Z)
第四象限角:{x∣2k∏+3∏/2<x<(2k+2)∏}(k∈Z)

相关推荐: