万分之五怎么写?0.5% 0.5‰ 5‰ ?到底是那个啊?谢谢
万分之五是千分之0.5,也就是0.05%,但是一般不这样写,不过你也可以这样写,有一种新的表达就是千分之0.5,所以是0.5‰。
千分号就是在百分号的基础上再加一个根据好似的圆圈,如图:‰ 这个就是千分号。万分号跟这个道理一样,再加个圆圈:‱;以此类推,亿分号可想而知。但一般百分号、千分号用的比较多,万分号乃至亿分号很少见,依此类推,这些符号就不简练了,不如直接写万分之计几、亿分之几方便。
百分号:表示分数的分母是100的符号(%),如32%表示一百分之三十二,相当于小数的0.32。在计算机领域中:百分号表示分数的分母是100的符号(%),如32%表示一百分之三十二,相当于小数的0.32。 通配符(wildcard)是一类键盘字符,包括星号(*)、问号 (?)和百分号(%)等,当进行网络或文件查找不知道真正字符或者不想键入完整单词时,可以使用它来代替真正字符或完整的单词。
Google使用的通配符属于“全词通配符”(full-word wildcard)是指代替一个单词而不是单词中的某个或几个字母的键盘字符,google的全词通配符是*(星号),一次检索可以使用若干个*。
微分方程的特解怎么求
二次非齐次微分方程的一般解法
一般式是这样的ay+by+cy=f(x)
第一步:求特征根
令ar²+br+c=0,解得r1和r2两个值,(这里可以是复数,例如(βi)²=-β²)
第二步:通解
1、若r1≠r2,则y=C1*e^(r1*x)+C2*e^(r2*x)
2、若r1=r2,则y=(C1+C2x)*e^(r1*x)
3、若r1,2=α±βi,则y=e^(αx)*(C1cosβx+C2sinβx)
第三步:特解
f(x)的形式是e^(λx)*P(x)型,(注:P(x)是关于x的多项式,且λ经常为0) 则y*=x^k*Q(x)*e^(λx) (注:Q(x)是和P(x)同样形式的多项式,例如P(x)是x²+2x,则设Q(x)为ax²+bx+c,abc都是待定系数)
1、若λ不是特征根 k=0 y*=Q(x)*e^(λx)
2、若λ是单根 k=1 y*=x*Q(x)*e^(λx)
3、若λ是二重根 k=2 y*=x²*Q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)
f(x)的形式是e^(λx)*P(x)cosβx或e^(λx)*P(x)sinβx
1、若α+βi不是特征根,y*=e^λx*Q(x)(Acosβx+Bsinβx)
2、若α+βi是特征根,y*=e^λx*x*Q(x)(Acosβx+Bsinβx)(注:AB都是待定系数)
第四步:解特解系数
把特解的y*,y*,y*都解出来带回原方程,对照系数解出待定系数。 最后结果就是y=通解+特解。 通解的系数C1,C2是任意常数。
拓展资料:微分方程
微分方程指描述未知函数的导数与自变量之间的关系的方程。微分方程的解是一个符合方程的函数。而在初等数学的代数方程,其解是常数值。
高数常用微分表
唯一性
存在定一微分程及约束条件,判断其解是否存在。唯一性是指在上述条件下,是否只存在一个解。针对常微分方程的初值问题,皮亚诺存在性定理可判别解的存在性,柯西-利普希茨定理则可以判别解的存在性及唯一性。针对偏微分方程,柯西-克瓦列夫斯基定理可以判别解的存在性及唯一性。 皮亚诺存在性定理可以判断常微分方程初值问题的解是否存在。
高等代数。基础解系怎么求?要通用的方法。求AX=0的基础解系。
1、如何求基础解系:
设n为未知量个数,r为矩阵的秩。只要找到齐次线性方程组的n-r 个自由未知量,就可以获得它的基础解系。具体地说,我们先通过初等行变换把系数矩阵化为阶梯形,那么阶梯形的非零行数就是系数矩阵的秩。把每一个非零行最左端的未知量保留在方程组的左端,其余n-r 个未知量移到等式右端,再令右端 n-r个未知量其中的一个为1,其余为零,这样可以得到 n-r个解向量,这 n-r个解向量构成了方程组的基础解系。
2、AX=0的基础解系,例如:
(1)1 2 -3 -2
-2 3 5 4
-3 8 7 6
解: A-->
r2+2r1,r3+3r1,r2*(1/7)
1 2 -3 -2
0 7 -1 0
0 14 -2 0
r3-2r2
1 2 -3 -2
0 1 -1/7 0
0 0 0 0
r1-2r2
1 0 -19/7 -2
0 1 -1/7 0
0 0 0 0
基础解系为: a1=(19,1,7,0), a2=(2,0,0,1)
通解为: c1a1+c2a2, c1,c2为任意常数.