导航菜单
首页 >  » 正文

数学与应用数学专业的主要课程有哪些? 高等代数。基础解系怎么求?要通用的方法。求AX=0的基础解系。

数学与应用数学专业的主要课程有哪些?

我是吉大数学专业的一名同学,学数学学到头秃的那种,接下来给大家介绍一下数学与应用数学的课程。
主干课程有数学分析、高等代数、空间解析几何、实变函数、复变函数、常微分方程、数学物理方程、泛函分析、微分几何、拓扑学、抽象代数。
数学分析、高等代数、空间解析几何这三门课程是在大一上的,是最基础的三门课程,是其他课程的根基,直接点说,就是这三门学不明白,接下来的其他课程将更加学不懂。其中数学分析内容较多,也较为重要,初学可能较为困难,多用些功夫,就会渐入佳境了。下图即为我们院所用的数学分析的教材,也是我们学院老师编著的。

大二会学复变函数、常微分方程和抽象代数,复变函数和数学分析的好多知识都是相关联的,如果大一基础打的好,这个时候学复变函数就会事半功倍。常微分方程是一门很重要的课,应用十分广泛,同时,也需要数学分析中会学到的微积分的知识和高等代数中矩阵的相关知识。由此可见,学好数学分析和高等代数多么重要。

同时,大一、大二还有C语言和物理这两门课,它们对今后数学的学习影响不大,但是C语言也很重要,它差不多是多数大学生都要学的一个基础课程。

因为我现在是大二下学期,所以对后面的课程还不是特别了解,就不一一为大家介绍了。
最后,我想说,数学各个课程之间关联非常强,大家想学好数学,基础一定要打牢。

高等代数。基础解系怎么求?要通用的方法。求AX=0的基础解系。

1、如何求基础解系:
设n为未知量个数,r为矩阵的秩。只要找到齐次线性方程组的n-r 个自由未知量,就可以获得它的基础解系。具体地说,我们先通过初等行变换把系数矩阵化为阶梯形,那么阶梯形的非零行数就是系数矩阵的秩。把每一个非零行最左端的未知量保留在方程组的左端,其余n-r 个未知量移到等式右端,再令右端 n-r个未知量其中的一个为1,其余为零,这样可以得到 n-r个解向量,这 n-r个解向量构成了方程组的基础解系。
2、AX=0的基础解系,例如:
(1)1 2 -3 -2
-2 3 5 4
-3 8 7 6
解: A-->
r2+2r1,r3+3r1,r2*(1/7)
1 2 -3 -2
0 7 -1 0
0 14 -2 0
r3-2r2
1 2 -3 -2
0 1 -1/7 0
0 0 0 0
r1-2r2
1 0 -19/7 -2
0 1 -1/7 0
0 0 0 0
基础解系为: a1=(19,1,7,0), a2=(2,0,0,1)
通解为: c1a1+c2a2, c1,c2为任意常数.

零基础学习高等数学、线性代数和概率论各需要多少时间?

展开全部

楼上的同学,考研跟期末考试一样吗,期末考试高数很多人两天就解决了,要想学得差不多高数两个月,线代半个月,概率半个月

零基础学习高等数学

你首先要有一个意识,没有能与不能这种问题。数学这个东西本身就是从基础出发,一步步发展到如今的,至少三次数学危机问题就出在基础上,被认为是公理的公理被想当然认为正确,导致了无法解释的矛盾。所以我的建议是起码要看看高中教科书(书上的题目都会做了也就差不多了),有兴趣再看看高中教辅,冰冻三尺,非一日之寒。上面那个说从不看书的还考了90纯粹是扯淡,大学最后一节课就是划重点,就是把大部分题目告诉你,都告诉你题目了还愁弄不到答案吗?

自学数电和模电之前要先学什么,需要哪些基础?

,你买的那两本书很好。学数电模电你必须先扎扎实实地把电路理论基础学好,数电对电路理论知识要求不高,模电就必须在学好电路的基础上去学习,不然无从学起。

数学零基础,还有几天开学初三了,怎么办????速求学习方法。。。。

从基础的开始学吧,关键自己要有兴趣,实在没兴趣,看在要升学,要考试,要生存,为父母,为自己的份上也要硬下头皮学习下去,珍惜学习机会吧,以后到工作以后再学习是很累的很辛苦的。作为过来人和数学老师,希望你努力一下吧,希望听到你的好消息,加油!你一定可以的!!

离散数学在生活中的应用.

离散数学是一门理论兼实际应用的综合性学科,即具有严备的理论基础,又具备应用科学的特点。它是计算机科学和其他应用科学的基础理论课。 离散数学是一门理论兼实际应用的综合性学科,即具有严备的理论基础,又具备应用科学的特点。它是计算机科学和其他应用科学的基础理论课 一般是解决最优化问题,比如很多有联系的事情,按照如何顺序在做能达到用时最少,效果最好。主要用在工程领域和计算机领域。 定义:离散数学是一门理论兼实际应用的综合性学科,即具有严备的理论基础,又具备应用科学的特点。它是计算机科学和其他应用科学的基础理论课。 应用:逻辑与证明,算法,计算方法与分类原理,循环关系,图论,树,网络模型,布尔代数与组合电路,自动化、语法与语言,计算几何。离散数学课程所涉及的概念、方法和理论,大量地应用在 “ 数字电路 ” 、 “ 编译原理 ” 、 “ 数据结构 ” 、 “ 操作系统 ” 、 “ 数据库系统 ” 、 “ 算法的分析与设计 ” 、 “ 软件工程 ” 、 “ 人工智能 ” 、 “ 多媒体技术 ” 、 “ 计算机网络 ” 等专业课程以及 “ 信息管理 ” 、 “ 信号处理 ” 、 “ 模式识别 ” 、 “ 数据加密 ” 等 参考资料: 给老师正浦靠费的 《离散数学》是理工科高等院校计算机专业的重要基础课程,它不仅为后续课程——数据结构、操作系统、编译原理、数据库原理、人工智能等做必要的理论准备,而且在培养学生的创新思维、创新能力和综合素质方面有其独特的作用。 到20世纪下半叶乃至21世纪,随着电气时代乃至计算机时代的来临。对直接与计算机打交道的越来越多的人群来说,最重要的数学趋势不再是以微积分为代表的连续数学,而是以图论、组合学、数论、代数、概率论、运筹学与控制论、数理逻辑等为核心内容的离散分析,也就是离散数学。因为计算机是“离散地”处理、计算、安排、存储、调拨、配置,用“离散”近似(可做到相当精确)逼近“连续”。从中学到大学,从数学专业到理工科专业,离散数学的课程和内容逐步与传统的突出连续数学的课程及内容分庭抗礼,起着越来越显著的作用。 最实际的应用比如说最短路径问题,就要用到离散的图论知识,在物流方面应用广泛。求商场最佳进货量,随不是直接的离散问题,也要用到离散的思想。此外,凡是涉及计算机、数值分析的地方就少不了离散数学。离散数学已经越来越多的影响着人类的生活。

数学零基础,想考研,一年时间能学好吗?

显然,你对数学的分数期望值不能太高,遇到难题明智的选择是放弃,高于分数线就成,当然,如果你对数学很感兴趣或者说很有天分,那可以考虑做难题,否则还是巩固基础比较合适,毕竟大多数分数都是考查学生的基本功。
如果你一年时间较多花在数学上,可能其他的也落下了,个人觉得不太合算
总之,有决心就有希望,考研就怕三心二意,很多人都是中途放弃了

相关推荐: