考研数学二的考试范围?
考研数学的范围:
一、函数、极限、连续
1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
二、一元函数微分学
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求e68a843231313335323631343130323136353331333363373133平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.
三、一元函数积分学
1.理解原函数的概念,理解不定积分和定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3.会求有理函数、三角函数有理式和简单无理函数的积分.
4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
5.了解反常积分的概念,会计算反常积分.
6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.
四、多元函数微积分学
1.了解多元函数的概念,了解二元函数的几何意义.
2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.
3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.
4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.
5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).
五、常微分方程
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.
3.会用降阶法解下列形式的微分方程: 和 .
4.理解二阶线性微分方程解的性质及解的结构定理.
5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.
7.会用微分方程解决一些简单的应用问题.
考研数学基础题,中档题和难题的比例是多少?
考研跟高考不一样,属于选拔性考试,它的出题方针就是要故意提高难度,刷下大部分考生的,所以有难度的必需的,特别基础的问题是不会出的。
只知道数三里面的高数、线代、概率,三部分的分值大约是5:3:2这样,其中高数题型变化比较大,大家都说是最难的,线代其次,基本不变的是概率。我自己复习的经验:线代属于万变不离其宗,把几种解题思路掌握了就都能够做对路,概率属于看一眼题目就知道是考哪个公式的,需要把公式都背清楚了。高数难是因为本身大纲里的内容多,出题又考计算力,又考公式变形的能力,难的题目都属于变一点就完全不是一个做法的那种,需要大量的练习。但是送分题还是有的,按步骤给分也很宽松。
关于比例问题:研究生考试从八几年才开始组织,不像高考那样考了很长时间都很规范了。研究生的卷子就是教育部找一帮大学教授,临时组成出题组,大家拼题。老师不一样,题的难度也不一样,你对比一下历年真题就能看出来了。而且前面几年研究生没有扩招,考研的也没多少人,水平也低,数学卷子是100分的。那时的比例跟现在年年扩招,千军万马过独木桥完全是两个概念了。而且现在应届的、同等学力的、在职的、辞职的,跨学校、跨专业的,大家都可以考研,考生的背景很大不同,单看一个比例没有意义。
另外,这个‘失败’也有很多含义:10月报名时有人还没决定考哪个专业,就索性都报了,最后他只能考一个,剩下的那些就都算弃考了;还有人是考完第一门后面就不来了,到最后一场可能考场里都没几个考生了;应届的有很多是一边找工作一边考研的,找到超好的工作了,或者申请到国外的研究生了,干脆就不去考了。
而且考研是看总分的呀,你数学不好不是还有另外三门呢么,数学保证过线,其他三门考高些也没问题啊。所以下了决心考研,就一门心思的看书做题,好好复习,要有信心,总拿比例这种东西自己吓唬自己,实在是浪费时间的。
考研中高等数学601考什么?
1. 一般认为高数301为高教版高等数学一,是考研中最难的数学,包括高数、线代和数理统计高数302为高教版高数二,包含高数的部分和线代.还有一个高数361,代表的是同济版的高等数学,难度和高教版差不多,侧重方向不同.
2. 高等数学601强军计划的研究生。602高等数学(高等数学一般是指微积分)是学校自命题,要与学校联系,看考试范围.
考研数学三 考 柯西极限存在准则么?
考。
柯西极限存在准则用来判断某个式子是否收敛的充要条件(不限于数列),主要应用在以下方面:
(1)数列
(2)数项级数
(3)函数
(4)反常积分
(5)函数列和函数项级数
考研数学函数、极限、连续常考题型有:复合函数、极限的概念与性质、无穷小量阶的比较、极限的运算、极限中参数的确定、渐近线的计算、函数的连续性、间断点的类型、有界性的判断。
扩展资料:
数学三的考试形式:
1、试卷满分及考试时间
试卷满分为150分,考试时间为180分钟.
2、答题方式
答题方式为闭卷、笔试.
数学三的试卷内容结构:
微积分 56%
线性代数 22%
概率论与数理统计 22%
数学三的试卷题型结构:
单项选择题选题8小题,每题4分,共32分
填空题 6小题,每题4分,共24分
解答题(包括证明题) 9小题,共94分。
参考资料来源:搜狗百科-考研数学三大纲
参考资料来源:研招网-2019考研数学一二三公共考点:重难点汇总(上)