导航菜单
首页 >  预测  > 十大经典预测算法

十大经典预测算法

 

1. 线性回归

在统计学和机器学习领域,线性回归可能是最广为人知也最易理解的算法之一。

预测建模主要关注的是在牺牲可解释性的情况下,尽可能最小化模型误差或做出最准确的预测。我们将借鉴、重用来自许多其它领域的算法(包括统计学)来实现这些目标。

线性回归模型被表示为一个方程式,它为输入变量找到特定的权重(即系数 B),进而描述一条最佳拟合了输入变量(x)和输出变量(y)之间关系的直线。

十大经典预测算法_支持向量机

线性回归

例如:y = B0 + B1 * x

我们将在给定输入值 x 的条件下预测 y,线性回归学习算法的目的是找到系数 B0 和 B1 的值。

我们可以使用不同的技术来从数据中学习线性回归模型,例如普通最小二乘法的线性代数解和梯度下降优化。

线性回归大约有 200 多年的历史,并已被广泛地研究。在使用此类技术时,有一些很好的经验规则:我们可以删除非常类似(相关)的变量,并尽可能移除数据中的噪声。线性回归是一种运算速度很快的简单技术,也是一种适合初学者尝试的经典算法。

2. Logistic 回归

Logistic 回归是机器学习从统计学领域借鉴过来的另一种技术。它是二分类问题的首选方法。

像线性回归一样,Logistic 回归的目的也是找到每个输入变量的权重系数值。但不同的是,Logistic 回归的输出预测结果是通过一个叫作「logistic 函数」的非线性函数变换而来的。

logistic 函数的形状看起来像一个大的「S」,它会把任何值转换至 0-1 的区间内。这十分有用,因为我们可以把一个规则应用于 logistic 函数的输出,从而得到 0-1 区间内的捕捉值(例如,将阈值设置为 0.5,则如果函数值小于 0.5,则输出值为 1),并预测类别的值。

十大经典预测算法_支持向量机_02

Logistic 回归

由于模型的学习方式,Logistic 回归的预测结果也可以用作给定数据实例属于类 0 或类 1 的概率。这对于需要为预测结果提供

相关推荐: