理想状态下晶体发生Bragg衍射时其衍射峰应为δ函数且峰宽为零[1]。实际情况下由于仪器及样品均非理想状态,衍射峰会呈现出一定的峰形并伴随衍射峰的宽化。仪器导致的峰宽可通过测定标准样的方式进行矫正,而样品本身所造成的峰宽则取决于晶粒尺寸、位错等缺陷造成的微观应变、层错及孪晶、元素浓度梯度等[2]。研究Bragg衍射峰的峰形已成为表征材料内部缺陷的重要手段[3,4,5],而将材料的缺陷与峰形的变化联系起来则需要对应的理论模型[6,7,8,9]。值得一提的是,位错是多数金属结构材料的主要强度来源[10,11],然而当位错密度高到一定程度时,其数值难以采用传统透射电镜(TEM)观察来获得,这给位错强化贡献的定量表征甚至材料主要强化方式的定性判断带来了不少困难和争议[12,13]。因此通过分析衍射峰的宽化并配合相应理论模型至关重要。例如,修正Williamson-Hall法[14]可将不同衍射峰的峰宽与材料的位错密度联系起来,进而推算出位错密度的大概范围。该方法因较早被提出且直观易懂,已被广泛应用于对位错密度的半定量计算[15,16,17],