新一代人工智能新趋势
社会发展史上,人类经历了农业革命、工业革命,当前正在经历信息革命。智能化是信息革命的一个新阶段,信息革命从数字化开始发动,网络化将其提升到了非常重要的阶段,现在人类社会进入了智能化阶段。
人工智能是依托人工设计的装置,为了完成人工规定的任务,通过人工设计的算法和由人工(直接或间接)提供的数据,经学习形成自主的感知、认知和决策能力。人工智能是渗透力很强的通用技术,是引领新一轮科技产业变革的战略性技术,具有溢出带动性很强的“头雁效应”。
近年来,有关人工智能的研究不断增长。WoS统计数据表明,2018~2020年,人工智能算法研究论文数量持续增长,从13万增长到17万多篇,应用领域也逐年扩大。
新一代人工智能技术是在克服现存瓶颈中开辟新道路的。当前人工智能发展的瓶颈,包括数据可获得性和质量问题、模型可移植性问题、能效和能耗问题、语义鸿沟问题、算法可解释性问题、可靠性问题等等。
数据的可获得性和质量是新一代人工智能面临的第一个大问题。大量数据的获得并不那么容易,一般的企业没有能力获得这么大量的数据,也花不起如此之高的成本去做大量标注,而且还需要投入大量的算力。
其次是能耗瓶颈。2020年5月,人工智能非营利组织OpenAI发布了预训练语言模型GPT-3,其具有1750亿参数,在许多自然语言处理数据集上均具有出色的表现,包括翻译、问答和文本填空任务,还包括一些需要即时推理或领域适应的任务等,可以说其在很多实际任务上已大幅接近人类水平。开源预训练模型大大降低了企业开发的门槛,但这种神经网络模型所需的数据、算力和能耗非常大,GPT-3训练所用的数据量达到45TB,训练费用更是超过1200万美元。
值得关注的是,近年来AI加速器的需求快速增长,发展异常活跃,一批新生力量强势崛起。一方面是通过将现有算法嵌入芯片,提高速度、降低能耗;另一面,也出现了一些高效的新算法。
比如,来自麻省理工学院、维也纳工业大学等机构的团队,仅用19个类脑神经元就实现了控制自动驾驶汽车,使其能够模仿学习,具有扩展到仓库用自动化机器人等应用场景的潜力,而常规的深度神经网络则需要数百万神经元。这种类脑小参数模型的能耗也大为降低。这一研究成果发表在2020年10月《自然•机器智能》上。
2020年8月,《自然》封面报道了清华大学的研究成果——“类脑计算与机器学习结合的芯片问世”,成为全球关注的重大新进展。
2020年10月,《自然》发表清华大学张悠慧等提出的“类脑计算完备性”概念以及软硬件去耦合的类脑计算系统层次结构。《自然》评论认为:“‘完备性’新概念推动了类脑计算”,对于类脑系统存在的软硬件紧耦合问题而言,这是“一个突破性方案”。
2020年12月,北京大学杨玉超团队提出并实现了一种基于相变存储器(PCM)电导随机性的神经网络高速训练系统,可有效缓解人工神经网络训练过程中时间、能量开销巨大并难以在片上实现的问题,为人工神经网络在终端平台上的应用以及片上训练的实现提供了新的方向。
无论是从算法、理论、硬件还是基础器件,都可以看到新一代人工智能技术的新趋势:强功能、高效率、新体系。
人工智能产业发展
中国新一代人工智能发展战略研究院选择以人工智能解决方案为主业的企业进行研究,经过持续三年的观察发现,智能科技产业是企业、大学、科研院所、投资者、