测试卷解答题由6个小题减少到5个小题,虽然题目数量减少,但每小题的分值和总的分数占比都增加了,实际上对数学思维过程的考查得到了加强。测试卷第15、16、17题注重基础性,强调通性通法,难度适中,有利于考生发挥,也保持了测试卷的整体平稳性。其中第15题考查导数及其应用,近几年数学新课标卷未曾以这方面知识作为第一个解答题的考查内容,测试卷在这方面打破了常规;第16题考查概率,情境设置较为新颖,相比常见概率试题有所创新;第17题可以看作常规的立体几何解答题。测试卷第18、19题更加注重综合性、应用性、创新性,这两个题分值最高,试题容量明显增大,对学科核心素养的考查也更深入。两个题有各自特点,不适用以传统“压轴题”的想法看待其中某一个题。第18题以抛物线为基本情境,第(1)问的考查内容属于解析几何中的通性通法,第(2)问如果仍使用解析几何的常规方法,将导致非常复杂的计算,可行的解法需要将所求三角形的面积转换为一个适合计算的四边形面积,然后由基本不等式得到解答。这个解法的关键步骤虽然属于初中数学学过的平面几何知识内容,但对学科核心素养之一的直观想象有很高的要求,能综合运用不同的几何方法解决问题也是学科核心素养水平的重要体现。第19题的试题情境是在密码学理论中有重要地位的盖莫尔(ElGamal)加密体制。在大数据时代,数据安全问题越来越受到重视。盖莫尔公钥密码体制是在网络上进行保密通信和数字签名的有效安全算法,应用十分广泛,其数学理论基础就是题目中讨论的离散对数。在盖莫尔公钥密码体制的情境下,题目中的x是明文,p,a,b是公钥,离散对数n是密钥,(y1,y2)是对x加密得到的密文,由(y1,y2)得到x是解密。对于充分大的素数p和适当的a,求解离散对数是困难的,但其逆运算(离散指数运算)可以用平方-乘算法快速有效地进行计算,这是盖莫尔公钥密码体制安全有效性的依据。第19题考查的数学内容是指数、对数的运算以及指数与对数的互逆运算,其中第(2)问是证明离散对数形式上满足普通对数的运算规则,第(3)问本质上是进行离散指数运算。然而更重要的是对逻辑推理等学科核心素养的考查。离散对数与普通对数的本质差别在于同余运算。同余的概念是现代数学中非常重要的概念,对同余问题的研究也是中国优秀传统数学文化的重要部分(如著名的中国剩余定理)。题目中没有明确引入同余的概念,仅仅使用了余数概念,这是在小学数学中学过的概念。题目中附加了条件1,a,a2,⊗,...,ap-2,⊗两两不同,在这个限制条件下不需要一般形式的费马小定理,简化了问题叙述,降低了题目难度,通过第(1)问又进一步对ap-1,⊗=1给出启发性提示。这样的处理符合多数考生的实际知识水平和认知能力。第(3)问中的随机常数k完全来自于实际应用,对每一条明文x使用随机选取的k是安全性的必要保证。
现在我们简要概括测试卷的总体特点。首先,测试卷减少了试题数量,增加了解答题的分数占比,对数学思维过程的考查有所加强。由于试题数量减少,考查知识内容的覆盖面受到一定影响,测试卷着重考查数学学科核心素养,充分体现基础性、综合性、应用性、创新性的考查要求,不受限于对某些具体知识内容的考查。测试卷很好地控制了试题难度,赋分更加合理,减轻了考生负担。测试卷灵活改变试题顺序,防止猜题押题,鼓励考生注重素质教育,消除应试教育的弊端。可以说,适应性测试数学试卷对可能的数学高考改革做了一次有益的探索,值得关注。总结它的经验和实践效果,让我们对今后的数学高考改革充满期待。
清华大学数学科学系教授文志英:
2024年适应性测试考题类型比例略有调整,主要调整如下:(1)减少全卷的题量,特别是减少了解答耗时较多的多项选择题和考生较难得分的填空题。同时减少了解答题的数量。全卷由过去的22个题减少到19个题。(2)增加了多选题的单题分值和解答题的总分值,强化了对思维过程和思维能力的考查。
调整试卷结构的主要目的是给学生