2022年成人高等招生全国统一考试专升本高等数学
(一)
第一卷(选择题)
一、选择题(1-10小题,每题4分,共40分,在每题给出的四个选项中,只有一项为哪一
项符合题目要求的)
1.当XTO时,以下变量是无穷小量的为(〕。
A.1B.2x
X2
C.sinxD.ln(x+e)
2
2.lim。+]=()o
XT8X
A.eB.e-1
C.e2D.e-2
ie~~x,xw0
3.假设函数f(x)y在乂=0处连续,那么常数a二
()0a,x=0
A.0B.1
2
C.1D.2
4.设函数Kx)=xlnx,那么f'(e)=()。
A.-1B.0
C.1D.2
5,函数f(x)=x3—3x的极小值为()。A.-
2B.0
C.2D.4
6.方程x2+2y2+3z2=1表示的二次曲面是()oA.
圆锥面B.旋转抛物面
C.球面D.椭球面
7.假单「(2x+k)dx=1,那么常数k
()oA.-2B.-1
C.0D.1
8.设函数f(x)在[a,b]上连续且f(x)>0,那么()。
A.fbf(x)dx>0B.Jbf(x)dx0------------
22.(8分)设C=l+t;求也。
y=14-13dx
23.(8分)sinx是f(x)的一个原函数,求』xf'(x)dx。
4
24.(8分)计算❷」4x。
Q1+/X
25.(8分)设二元函数z=x2y2+x-y+1,求运及二M
dydxdy
26.(10分)计算二重积分乩a2+y2dxdy,其中区域D={(x,y)|x2+y2工4}。
27.(10分)求微分方程ydy=x2的通解。
dx
28.(10分)用铁皮做一个容积为V的圆柱形有盖桶,证明当圆柱的高等于底面直径时,所使用
的铁皮面积最小。
2022年成人高等招生全国统一考试专升本高等数学
(一)
【参考答案】
第一卷(选择题)
一、选择题(1T0小题,每题4分,共40分,在每题给出的四个选项中,只有一项为哪一
项符合题目要求的)
1.【答案】C
【解析】lllllgslls,协sslls^^S=0
xx-^0
2.【答案】C
【解析】山山令+双=川团e+26”=ee2
XX-tCOxxrz-»ooxx
3.【答案】B
【解析】llllllffCvi)珊福旷处(«(1)J
rx~*0xx-»022
4.【答案】D
【解析】H'(xx)=Ussxx+xx(llssxxy=Ussxx+1,所以=Ussee+1=2
5.【答案】A
2
【解析】因为/「3)=3xx-3,翎'3)=0,得驻点x“=-l,xx2=1.又/7"3)=6xi,//(一1)=
-60,那么定积用「力(富)如的值为曲线yy=/仰),直线a=aa,xx=
b-^0所围成图形的面积,所以「巧了(戏)ddx8>0
9.【答案】A
【解析】因为直线方程为g=y+2=z-3,所以其方向向量为(3,—1,2)。
3-12
10.【答案】B
100
1,八―°°八.1813
(网析】s苗8时,皿*…T。,235M『五1)FMJ
______1
七」1OO78-V
为:*m,而隽m发散,所以飞心搬散,由莱布尼茨判别法知端丁心>*】=
nn
面QG1月%舲%断0,那么叫)收敛,故嗖g条件收敛,
1
第二卷(非选择题)
二、填空题EF22■小题厂每题4分,共40分)11.
【答案】1
【解析】出以xx-2=1=1
yT$ssm?to-2)
麻械-2)
xx-*2xx-2
12.【答案】y=l
2
【解析】即、8=,伍〃里1,所求曲线的水平渐近线方程为y-1
TT~一一
1
x%T8xx->oo2-fc.22
2x3M
13.【答案】1
【解析】/⑴=llllW'g"⑴=2,比山伙6"⑴,1今lllll令夕8cA"。)-lllll-^
rx-»lxx-lXXTIXX2-1一=l衅xx-lI,xr->lXX-XX-»11
+11
2x1=1
2
14.【答案】1+1
X2
【解析】因为/仰)=以「,13)=为'-1=1+1
XX的嬴
15.【答案】2
222
」产析】f^sllssxx+ccccssxx)ddxx叫貌梦有2些CCCJ^S:xxdixx=0斗2Jccccssxxdd^x=2sinxx|
Tin.22oo
~222
16.【答案】s
2
【解析】1ddx^^=aaaaccaaaas^(xi+(x>=
0
17.【答案】3x-y-3=0
【解析】曲线上某一点的切线斜率为收=y/=2%x+1,因为该切线的斜率为3,BW=2n+l=3,xx
=byylxi=i=0,即切线过点(1』),所求切线为yy=3(%%-1),即3%%_yy_3=0。
18.【答案】
x2+y
丽12_(XX2)Z_2xx
[解析】zz=lfcs(n2+yy),
ddxxxi+yyxx2+yy
x
19.【答案】f(x)
【解析】需"0)d血,=»(“)
20.【答案】3
【解析】pp=,〃山料«3"=:,故收敛半径为/?够1=3
n1
nn-*coaannn-»