(I)求出在处的导数,即切线斜率,求出,即可求出切线方程;
(II)令,可得,则可化为证明与仅有一个交点,利用导数求出的变化情况,数形结合即可求解;
(III)令,题目等价于存在,使得,即,利用导数即可求出的最小值.
【详解】(I),则,
又,则切线方程为;
(II)令,则,
令,则,
当时,,单调递减;当时,,单调递增,
当时,,,当时,,画出大致图像如下:
所以当时,与仅有一个交点,令,则,且,
当时,,则,单调递增,
当时,,则,单调递减,
为的极大值点,故存在唯一的极值点;
(III)由(II)知,此时,
所以,
令,
若存在a,使得对任意成立,等价于存在,使得,即,
,,
当时,,单调递减,当时,,单调递增,
所以,故,
所以实数b的取值范围.