阅读量:
774
作者:
陆生琪
展开
摘要:
留数定理是复积分和复级数理论相结合的产物,需要正确理解孤立奇点的概念与孤立奇点的分类和函数在孤立奇点的留数概念.掌握留数的计算法,特别是极点处留数的求,实际中会用留数求一些实积分.留数是复变函数论中重要的概念之一,它与解析函数在孤立奇点处的洛朗展开式,柯西复合闭路定理等都有密切的联系.现在研究的留数理论就是是柯西积分理论的继续.中间插入的泰勒级数和洛朗级数是研究解析函数的有力工具.留数在复变函数论本身及实际应用中都是很重要的它和计算周线积分(或归结为考察周线积分)的问题有密切关系.此外应用留数理论,我们已有条件去解决"大范围"的积分计算问题,还可以考察区域内函数的零点分布状况.
展开
关键词:
留数理论泰勒级数积分
DOI:
10.3969/j.issn.1001-9960.2009.33.748
年份:
2009