来源:创业邦
来源丨Founder Park(ID:Founder-Park)这可能是最懂AI产品的两位PM之间的对谈。
Kevin Weil,OpenAI CPO(首席产品官),之前曾是Instagram、Twitter的产品副总裁。
Mike Kreiger,Anthropic CPO,曾担任Instagram的联合创始人、CTO。
都做过亿级消费产品,现在的工作同时面向消费者、企业和开发者,各自的大模型又都是当下能力最强的大模型之一。
而这次对谈的主持人,是对大模型很了解的风险投资公司Conviction的创始合伙人Sarah Guo。
笔者基于对谈整理了文字内容,干货很多,建议全文阅读。
在大模型公司做产品,
ToC、ToB、ToD 都要做
Sarah Guo:你们俩都曾管理过 Instagram,然后你们俩进入了一个相对较新的角色,很期待听听你们俩的各种想法。Kevin,从你开始吧。你做过很多不同又有趣的事情,你接这份新工作(OpenAI的CPO)时,朋友和团队的反应是什么样的?
Kevin Weil:非常兴奋。我觉得这是最有趣、最有影响力的岗位之一,有太多东西要去探索。我从没经历过这样具有挑战性、有趣(也让我彻夜难眠)的产品岗位。它包含了产品岗位的所有常规挑战——弄清楚目标用户是谁、解决哪些问题之类的。
通常做产品时,是基于已有的技术基础去开发,我们知道手上有什么资源,然后尽力打造出最好的产品。而在这里,情况完全不同,每隔两个月,计算机就能做一些它们以前从未做到的事情,我们要去思考这些进展会如何影响产品,这种变化相当大。因此,能够从内部见证 AI 的发展,真的非常有意思,也令人着迷。而且,我在这里真的很享受这个过程。
Sarah Guo:Mike,你呢?前不久一起吃饭的时候,你那种纯粹的好奇心让我印象特别深。你就像个孩子一样兴奋地说,"对啊,我现在在学各种企业相关的东西。" 那么,跟我们聊聊吧——这种服务 Instagram 以外的客户、或者在一个以研究为驱动的组织中工作,给你带来什么样的惊喜?
Mike Krieger:这个岗位对我来说是全新的体验,我 18 岁时做了一个很「18 岁」的誓言,就是每一年都要过得不一样。所以,这也是为什么有时候我会觉得,「哦,又是做一个社交产品吗?我又在做同样的事了。」我不想重复之前做过的东西。
企业市场真的很特别。
比如说反馈周期,我觉得在企业里这更像是投资,周期比在外面要长得多。可能刚和别人有了初步接触,觉得对方挺喜欢你的产品。但突然发现项目进入了采购审批流程,可能要等上六个月才能真正部署,才能知道结果如何。你在企业里要适应这种等待的过程,当你着急问"为什么还没有落地"的时候,他们会说:"嘿,你才来两个月而已,这还在各个副总裁那里审批呢,总会通过的。"所以你必须要适应这种不同的时间节奏。
但有趣的是,一旦项目部署完成,你就能获得真正的反馈和互动。你可以直接打电话给客户,问问他们:"系统用得怎么样?效果好吗?"相比之下,面向普通用户时,你只能做数据分析,虽然也可以找一两个用户聊聊,但他们没有足够的动机来详细告诉你哪里做得好,哪里做得不好。这种企业市场的反馈方式虽然不同,但确实也很有收获。
Sarah Guo:Kevin,你之前参与了那么多种类的产品开发,感觉你的直觉在这里有多少用得上?
Kevin Weil:是的,我也想补充一下企业客户的特点,然后再回答这个问题。
企业客户有个很有意思的点,它不一定只看产品本身,因为还有买方的其他因素存在。他们有自己的目标,就算你做了一个顶尖的产品,企业内部的人都很满意,但这也不一定就代表着什么。比如我在跟某个大客户开会时,他们表示非常满意,觉得产品很棒,但是他们说,「有件事我们需要,就是希望你们任何更新都提前60天通知我们。」当时我心里想,我也希望能提前60天知道呢!
很有意思的是,因为在OpenAI,我们既有面向消费者的产品,也有面向企业的产品,还有开发者产品。所以我们几乎是在同时做所有这些类型。至于直觉方面,我觉得大概有一半的工作能用得上吧。当你清楚自己要做什么产品时,比如快要发布高级语音模式或者Canvas时,直觉就派得上用场。你知道目标用户是谁,也清楚要解决哪些问题,这部分更像是传统的产品发布流程。
但这些项目的开始阶段就完全不同了。比如有些功能,是在新模型训练过程中才逐渐浮现的能力。你可能觉得某种功能有可能会实现,但其实研究团队甚至所有人都还不确定,就像在雾中看见一个模糊的轮廓,你不知道它能否真正实现,也不知道它的成功率会是60%、90%还是99%。而如果某个功能的成功率只有60%和达到99%时,整个产品的设计思路会完全不同。所以,这时你只能等待,还得时不时和研究团队沟通一下,「嘿,最近怎么样?模型训练进展如何?有什么新发现吗?」他们会说,「我们也在研究中,还在摸索。」这个过程确实很有意思,因为你是在和大家一起探索,相当随机。
Mike Krieger:这种情况最让我想起Instagram时期每次Apple发布WWDC消息的感觉——就好像这更新可能让我们受益,也可能让我们陷入混乱。不过,现在是自己的公司在内部给自己带来这些变数,这种感觉很酷,但同时也可能会彻底打乱产品计划。
模型的准确率到60%时,
就可以开发产品了
Sarah Guo:如果你们不知道未来会有什么功能,怎么可能做出计划呢?探索那些应该加入产品的新功能的迭代过程是怎样的?
Mike Krieger:其实你可以大致看到一些方向,虽然它不可预测,但至少是朝某个方向在前进。这样,你就能开始围绕这些方向去构建产品。
首先是从产品侧出发,去决定你要投资哪些功能,然后与研究团队一起做微调。像「artifacts」这种功能,我们和研究团队花了很多时间一起做调整,我觉得Canvas也是一样。就是进行「共同设计、共同研究、共同微调」。这也是在这家公司工作的一个特权,能参与设计这个过程。
第二,是关于功能的前沿突破。比如OpenAI的语音模式。我们这周发布的版本(Anthropic的Computer Use功能 )就是一个典型的例子,到了60%的完成度,我们就觉得「好吧,差不多够用了」。我们尝试做的是在过程的早期就把设计师嵌入进来,但要知道你不是在押注某个产品。
正如之前讲的实验过程一样,你的实验输出应该是学习,而不一定是每次都能推出完美的产品。结果应该是展示性或信息性的东西,这些东西可能会激发产品创意,而不是一种可预测的产品开发过程。这样降低预期,你就在心里已经做过风险规避了。
Sarah Guo:我们在做投资时,常常会思考一个问题,那就是,如果一个模型的成功率只有60%,而不是99%,那它还能做什么?很多任务可能最终接近60%的成功率,尤其是那些非常重要且有价值的任务。那么,你们在内部是怎么评估的?当你们面对这些任务时,产品设计上应该怎样去处理,以确保即使是「失败」的情况也能优雅地展示给用户,还是说,我们只需要等模型变得更强大?
Kevin Weil:实际上当模型的准确率只有60%时,还是可以做的。关键是你得为此做好设计。你必须预期,模型背后会有