富振奇, 邵枫, 蒋刚毅, 郁梅(宁波大学信息科学与工程学院, 宁波 315211)
摘 要目的 显示设备的多样化使得图像重定向的作用日益凸显。不同的重定向方法产生不同视觉感受的重定向图像,而如何评价重定向图像的质量,优化重定向算法是当前研究的热点与难点,为此,提出一种结合双向相似性变换的重定向图像质量评价方法。方法 首先对原始图像和重定向图像进行像素点双向匹配,利用网格顶点坐标对计算前向变换矩阵和后向变换矩阵。然后由相似性变换矩阵与标准变换矩阵间的距离得到重定向图像的几何失真。由网格面积缺失得到重定向图像的信息损失。最后结合网格的显著性,融合前向匹配与后向匹配的几何失真和信息损失得到重定向图像的质量。结果 该方法在RetargetMe和CUHK数据库上的KRCC(Kendall rank correlation coefficient)和SROCC(Spearman rank-order correlation coefficient)性能分别达到了0.46和0.71,较现有方法有较大提升。在前向匹配与后向匹配测试中,双向匹配的测试结果优于单向匹配。结论
首页 >
图像重定向Image Retarget > 结合双向相似性变换的重定向图像质量评价