导航菜单
首页 >  高数考研真题分类合集  > ​ 考研数学证明题的分类及解析

​ 考研数学证明题的分类及解析

​ 考研数学证明题的分类及解析2020-07-02 11:38:43来源:网络 【点睛】3h掌握考研全科备考方案    名师辅助择校及考研备考    22考研复试调剂攻略&23考研上岸指南 【考试入门】考研阅读个性化精准提分攻略    2h掌握考研数学基础考点 【热点】2022考研查分入口——晒分得奖学金

关于考研数学部分,大家在实际的备考积累中,可以从具体的题型入手,掌握题型的解题技巧,可以帮助我们更好的作答。小编为考生整理了详细的内容,供大家参考!

题目篇

考试难题一般出现在高等数学,对高等数学一定要抓住重难点进行复习。高等数学题目中比较困难的是证明题,在整个高等数学,容易出证明题的地方如下:

数列极限的证明

数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。

微分中值定理的相关证明

微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理:

1.零点定理和介质定理;

2.微分中值定理;

包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。

3.微分中值定理

积分中值定理的作用是为了去掉积分符号。

在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。

方程根的问题

包括方程根唯一和方程根的个数的讨论。

不等式的证明

定积分等式和不等式的证明

主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。

积分与路径无关的五个等价条件

这一部分是数一的考试重点,最近几年没设计到,所以要重点关注。

方法篇

以上是容易出证明题的地方,同学们在复习的时候重点归纳这类题目的解法。那么,遇到这类的证明题,我们应该用什么方法解题呢?

结合几何意义记住基本原理

重要的定理主要包括零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。

知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。

因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,

相关推荐: