导航菜单
首页 >  张宇考研表白  > 25高数考研张宇

25高数考研张宇

1. 两个重要极限

(1) lim ⁡ x → 0 sin ⁡ xx =1\lim _{x \rightarrow 0} \frac{\sin x}{x}=1limx→0​xsinx​=1, 推广形式 lim ⁡ f ( x ) → 0 sin ⁡ f ( x ) f ( x )=1\lim _{f(x) \rightarrow 0} \frac{\sin f(x)}{f(x)}=1limf(x)→0​f(x)sinf(x)​=1. (2) lim ⁡ x → ∞ ( 1 +1x )x =e\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x=\mathrm{e}limx→∞​(1+x1​)x=e, 推广形式 lim ⁡ x → 0(1+x)1 x=e, lim ⁡ f ( x ) → ∞ [ 1 +1f(x) ] f ( x )=e\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=\mathrm{e}, \lim _{f(x) \rightarrow \infty}\left[1+\frac{1}{f(x)}\right]^{f(x)}=\mathrm{e}limx→0​(1+x)x1​=e,limf(x)→∞​[1+f(x)1​]f(x)=e

2. 常用的等价无穷小量及极限公式

(1) 当x→0x \rightarrow 0x→0 时,常用的等价无穷小

(1) x ∼ sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ arctan ⁡ x ∼ ln ⁡ ( 1 + x ) ∼e x− 1 x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim \ln (1+x) \sim \mathrm{e}^x-1x∼sinx∼tanx∼arcsinx∼arctanx∼ln(1+x)∼ex−1.(2) 1 − cos ⁡ x ∼1 2 x 2, 1 − cos⁡ bx ∼b 2 x 2( b ≠ 0 ) 1-\cos x \sim \frac{1}{2} x^2, 1-\cos ^b x \sim \frac{b}{2} x^2(b \neq 0)1−cosx∼21​x2,1−cosbx∼2b​x2(b​=0).(3)a x− 1 ∼ x ln ⁡ a ( a > 0 a^x-1 \sim x \ln a(a>0ax−1∼xlna(a>0, 且 a ≠ 1 ) a \neq 1)a​=1).(4) ( 1 + x) α− 1 ∼ α x ( α ≠ 0 ) (1+x)^\alpha-1 \sim \alpha x (\alpha \neq 0)(1+x)α−1∼αx(α​=0).

(2) 当n→∞n \rightarrow \inftyn→∞ 或x→∞x \rightarrow \inftyx→∞ 时,常用的极限公式

(1) lim⁡n→∞ n n= 1 , lim⁡n→∞ a n= 1 ( a > 0 ) \lim _{n \rightarrow \infty} \sqrt[n]{n}=1, \lim _{n \rightarrow \infty} \sqrt[n]{a}=1(a>0)limn→∞​nn ​=1,limn→∞​na ​=1(a>0).(2) lim⁡x→∞anxn+an − 1 xn − 1 +⋯+a1x+a0bmxm+bm − 1 xm − 1 +⋯+b1x+b0={a n b m ,n=m,0,nm,\lim _{x \rightarrow \infty} \frac{a_n x^n+a_{n-1} x^{n-1}+\cdots+a_1 x+a_0}{b_m x^m+b_{m-1} x^{m-1}+\cdots+b_1 x+b_0}=\left\{\begin{array}{ll}\frac{a_n}{b_m}, & n=m, \\ 0, & nm,\end{array}\right.limx→∞​bm​xm+bm−1​xm−1+⋯+b1​x+b0​an​xn+an−1​xn−1+⋯+a1​x+a0​​=⎩⎨⎧​bm​an​​,0,∞,​n=m,nm,​ 其中a n,b ma_n, b_man​,bm​ 均不

为 0 .

(3) lim⁡n→∞ x n={0,∣x∣<1,∞,∣x∣>1,1,x=1,  不存在, x=−1;lim⁡n→∞enx ={0,x<0,+∞,x>0,1,x=0.\lim _{n \rightarrow \infty} x^n=\left\{\begin{array}{ll}0, & |x|1, \\ 1, & x=1, \\ \text { 不存在, } & x=-1 ;\end{array} \lim _{n \rightarrow \infty} \mathrm{e}^{n x}= \begin{cases}0, & x0, \\ 1, & x=0 .\end{cases}\right.limn→∞​xn=⎩⎪⎪⎨⎪⎪⎧​0,∞,1, 不存在, ​∣x∣1,x=1,x=−1;​limn→∞​enx=⎩⎪⎨⎪⎧​0,+∞,1,​x0,x=0.​(4) 若 lim ⁡ g ( x ) = 0 , lim ⁡ f ( x ) = ∞ \lim g(x)=0, \lim f(x)=\inftylimg(x)=0,limf(x)=∞, 且 lim ⁡ g ( x ) f ( x ) = A \lim g(x) f(x)=Alimg(x)f(x)=A, 则有 lim ⁡ [ 1 + g ( x )]f(x) =eA .\lim [1+g(x)]^{f(x)}=\mathrm{e}^A . lim[1+g(x)]f(x)=eA. 3.x→0x \rightarrow 0x→0 时常见的麦克劳林公式

sin ⁡ x = x −13! x 3+ o(x3 ),cos ⁡ x = 1 −12! x 2+14! x 4+ o(x4 ),tan ⁡ x = x +1 3 x 3+ o(x3 ),arcsin ⁡ x = x +13! x 3+ o(x3 ),arctan ⁡ x = x −1 3 x 3+ o(x3 ),ln ⁡ ( 1 + x ) = x −1 2 x 2+1 3 x 3+ o(x3 ), e x= 1 + x +12! x 2+13! x 3+ o(x3 ), ( 1 + x) a= 1 + a x + a(a−1)2! x 2+ o(x2 ). \begin{aligned} & \sin x=x-\frac{1}{3 !} x^3+o\left(x^3\right), \quad \cos x=1-\frac{1}{2 !} x^2+\frac{1}{4 !} x^4+o\left(x^4\right),\\ \\ & \tan x=x+\frac{1}{3} x^3+o\left(x^3\right), \quad \arcsin x=x+\frac{1}{3 !} x^3+o\left(x^3\right), \\ \\ & \arctan x=x-\frac{1}{3} x^3+o\left(x^3\right), \quad \ln (1+x)=x-\frac{1}{2} x^2+\frac{1}{3} x^3+o\left(x^3\right), \\ \\ & \mathrm{e}^x=1+x+\frac{1}{2 !} x^2+\frac{1}{3 !} x^3+o\left(x^3\right),(1+x)^a=1+a x+\frac{a(a-1)}{2 !} x^2+o\left(x^2\right) . \end{aligned}​sinx=x−3!1​x3+o(x3),cosx=1−2!1​x2+4!1​x4+o(x4),tanx=x+31​x3+o(x3),arcsinx=x+3!1​x3+o(x3),arctanx=x−31​x3+o(x3),ln(1+x)=x−21​x2+31​x3+o(x3),ex=1+x+2!1​x2+3!1​x3+o(x3),(1+x)a=1+ax+2!a(a−1)​x2+o(x2).​

当x→0x \rightarrow 0x→0 时,由以上公式可以得到以下几组“差函数”的等价无穷小代换式:

x−sin⁡x∼ x 36 ,tan⁡x−x∼ x 33 ,x−ln⁡(1+x)∼ x 22 x-\sin x \sim \frac{x^3}{6}, \quad \tan x-x \sim \frac{x^3}{3}, \quad x-\ln (1+x) \sim \frac{x^2}{2}x−sinx∼6x3​,tanx−x∼3x3​,x−ln(1+x)∼2x2​,arcsin⁡x−x∼ x 36 ,x−arctan⁡x∼ x 33 \arcsin x-x \sim \frac{x^3}{6}, \quad x-\arctan x \sim \frac{x^3}{3}arcsinx−x∼6x3​,x−arctanx∼3x3​.

4. 基本导数公式

(xμ) ′= μxμ−1( μ 为 常 数 ) , (ax) ′=a xln ⁡ a ( a > 0 , a ≠ 1 ) , (log ⁡ ax) ′=1xln⁡a( a > 0 , a ≠ 1 ) , ( ln ⁡ x) ′=1 x, ( sin ⁡ x) ′= cos ⁡ x , ( cos ⁡ x) ′= − sin ⁡ x , ( arcsin ⁡ x) ′=11−x 2 , ( arccos ⁡ x) ′= −11−x 2 , ( tan ⁡ x) ′= sec⁡ 2x , ( cot ⁡ x) ′= − csc⁡ 2x , ( arctan ⁡ x) ′=11+x2, ( arccot ⁡ x) ′= −11+x2, ( sec ⁡ x) ′= sec ⁡ x tan ⁡ x , ( csc ⁡ x) ′= − csc ⁡ x cot ⁡ x , [ln⁡( x + x2+1) ]′ =1 x 2+ 1,, [ln⁡(x+x2 − 1)] ′=1x 2 −1\begin{array}{ll} \left(x^\mu\right)^{\prime}=\mu x^{\mu-1} ( \mu 为常数), & \left(a^x\right)^{\prime}=a^x \ln a(a>0, a \neq 1), \\ \\ \left(\log _a x\right)^{\prime}=\frac{1}{x \ln a}(a>0, a \neq 1) , & (\ln x)^{\prime}=\frac{1}{x}, \\ \\ (\sin x)^{\prime}=\cos x, & (\cos x)^{\prime}=-\sin x, \\ \\ (\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^2}}, & (\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^2}}, \\ \\ (\tan x)^{\prime}=\sec ^2 x, & (\cot x)^{\prime}=-\csc ^2 x, \\ \\ (\arctan x)^{\prime}=\frac{1}{1+x^2}, & (\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^2}, \\ \\ (\sec x)^{\prime}=\sec x \tan x, & (\csc x)^{\prime}=-\csc x \cot x, \\ \\ {\left[\ln \left(x+\sqrt{x^2+1}\right)\right]^{\prime}=\frac{1}{\sqrt{x^2+1}},}, & {\left[\ln \left(x+\sqrt{x^2-1}\right)\right]^{\prime}=\frac{1}{\sqrt{x^2-1}}} \end{array}(xμ)′=μxμ−1(μ为常数),(loga​x)′=xlna1​(a>0,a​=1),(sinx)′=cosx,(arcsinx)′=1−x2 ​1​,(tanx)′=sec2x,(arctanx)′=1+x21​,(secx)′=secxtanx,[ln(x+x2+1 ​)]′=x2+1 ​1​,,​(ax)′=axlna(a>0,a​=1),(lnx)′=x1​,(cosx)′=−sinx,(arccosx)′=−1−x2 ​1​,(cotx)′=−csc2x,(arccotx)′=−1+x21​,(cscx)′=−cscxcotx,[ln(x+x2−1 ​)]′=x2−1 ​1​​ 三角函数六边形记忆法: 在这里插入图片描述

注: 变限积分求导公式. 设F(x)=∫ φ2 ( x )φ1 ( x )f(t)dtF(x)=\int_{\varphi_2(x)}^{\varphi_1(x)} f(t) \mathrm{d} tF(x)=∫φ2​(x)φ1​(x)​f(t)dt, 其中f(x)f(x)f(x) 在[a,b][a, b][a,b] 上连续, 可导函数φ 1 (x)\varphi_1(x)φ1​(x) 和φ 2 (x)\varphi_2(x)φ2​(x) 的值域在[a,b][a, b][a,b] 上, 则在函数φ 1 (x)\varphi_1(x)φ1​(x) 和φ 2 (x)\varphi_2(x)φ2​(x) 的公共定义域上有:F ′( x ) =ddx [∫φ 1 (x)φ 2 (x) f ( t ) d t ]= f[φ2 ( x ) ] φ 2 ′( x ) − f[φ1 ( x ) ] φ 1 ′( x ) . F^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(t) \mathrm{d} t\right]=f\left[\varphi_2(x)\right] \varphi_2^{\prime}(x)-f\left[\varphi_1(x)\right] \varphi_1^{\prime}(x) .F′(x)=dxd​[∫φ1​(x)φ2​(x)​f(t)dt]=f[φ2​(x)]φ2′​(x)−f[φ1​(x)]φ1′​(x).

5. 几个重要函数的麦克劳林展开式

(1)e x =1+x+12 !x 2 +⋯+1n !x n +o(x n) \mathrm{e}^x=1+x+\frac{1}{2 !} x^2+\cdots+\frac{1}{n !} x^n+o\left(x^n\right)ex=1+x+2!1​x2+⋯+n!1​xn+o(xn).

(2)sin⁡x=x−13 !x 3 +⋯+(−1) n 1( 2 n + 1 ) !x2 n + 1+o(x2n+1) \sin x=x-\frac{1}{3 !} x^3+\cdots+(-1)^n \frac{1}{(2 n+1) !} x^{2 n+1}+o\left(x^{2 n+1}\right)sinx=x−3!1​x3+⋯+(−1)n(2n+1)!1​x2n+1+o(x2n+1).

(3)cos⁡x=1−12 !x 2 +14 !x 4 −⋯+(−1) n 1( 2 n ) !x2 n+o(x2n) \cos x=1-\frac{1}{2 !} x^2+\frac{1}{4 !} x^4-\cdots+(-1)^n \frac{1}{(2 n) !} x^{2 n}+o\left(x^{2 n}\right)cosx=1−2!1​x2+4!1​x4−⋯+(−1)n(2n)!1​x2n+o(x2n).

(4)11 − x=1+x+x 2 +⋯+x n +o(x n) ,∣x∣<1\frac{1}{1-x}=1+x+x^2+\cdots+x^n+o\left(x^n\right),|x|

相关推荐: