导航菜单
首页 >  幂函数高考真题  > 专题14 指数、对数、幂函数、函数图象、函数零点及函数模型的应用(含解析)

专题14 指数、对数、幂函数、函数图象、函数零点及函数模型的应用(含解析)

资源简介

中小学教育资源及组卷应用平台专题14 指数、对数、幂函数、函数图象、函数零点及函数模型的应用考点01 指数函数及其应用1.(2023·全国乙卷·高考真题)已知是偶函数,则()A. B. C.1 D.22.(2023·全国新Ⅰ卷·高考真题)设函数在区间上单调递减,则的取值范围是()A. B.C. D.3.(2022·北京·高考真题)已知函数,则对任意实数x,有()A. B.C. D.考点02 对数运算及指对互化1.(2024·全国甲卷·高考真题)已知且,则 .2.(2023·北京·高考真题)已知函数,则.3.(2022·天津·高考真题)化简的值为( )A.1 B.2 C.4 D.64.(2022·浙江·高考真题)已知,则()A.25 B.5 C. D.5.(2022·全国乙卷·高考真题)若是奇函数,则 , .6.(2021·天津·高考真题)若,则()A. B. C.1 D.7.(2020·全国·高考真题)设,则()A. B. C. D.考点03 对数函数及其应用1.(2024·北京·高考真题)已知,是函数的图象上两个不同的点,则()A. B.C. D.2.(2024·全国新Ⅰ卷·高考真题)已知函数在R上单调递增,则a的取值范围是()A. B. C. D.3.(2020·全国新Ⅱ卷·高考真题)已知函数在上单调递增,则的取值范围是()A. B. C. D.4.(2020·全国·高考真题)设函数,则f(x)()A.是偶函数,且在单调递增 B.是奇函数,且在单调递减C.是偶函数,且在单调递增 D.是奇函数,且在单调递减5.(2020·北京·高考真题)函数的定义域是.考点04 幂函数1.(2024·天津·高考真题)设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.(2023·北京·高考真题)下列函数中,在区间上单调递增的是()A. B.C. D.3.(2020·江苏·高考真题)已知y=f(x)是奇函数,当x≥0时, ,则f(-8)的值是.考点05 指对幂函数值大小比较1.(2024·天津·高考真题)若,则的大小关系为()A. B. C. D.2.(2023·全国甲卷·高考真题)已知函数.记,则()A. B. C. D.3.(2023·天津·高考真题)设,则的大小关系为()A. B.C. D.4.(2022·天津·高考真题)已知,,,则( )A. B. C. D.5.(2022·全国甲卷·高考真题)已知,则()A. B. C. D.6.(2022·全国新Ⅰ卷·高考真题)设,则()A. B. C. D.7.(2021·天津·高考真题)设,则a,b,c的大小关系为()A. B. C. D.8.(2021·全国新Ⅱ卷·高考真题)已知,,,则下列判断正确的是()A. B. C. D.9.(2020·天津·高考真题)设,则的大小关系为()A. B. C. D.10.(2020·全国·高考真题)已知55A.a11.(2020·全国·高考真题)设,,,则()A. B. C. D.12.(2020·全国·高考真题)若,则()A. B. C. D.考点06 函数图象1.(2024·全国甲卷·高考真题)函数在区间的图象大致为()A. B.C. D.2.(2023·天津·高考真题)已知函数的部分图象如下图所示,则的解析式可能为()

A. B.C. D.3.(2022·全国乙卷·高考真题)如图是下列四个函数中的某个函数在区间的大致图像,则该函数是()A. B. C. D.4.(2022·全国甲卷·高考真题)函数在区间的图象大致为()A. B.C. D.5.(2022·天津·高考真题)函数的图像为()A. B.C. D.6.(2021·浙江·高考真题)已知函数,则图象为如图的函数可能是()A. B.C. D.7.(2020·天津·高考真题)函数的图象大致为()A. B.C. D.8.(2020·浙江·高考真题)函数y=xcosx+sinx在区间[–π,π]的图象大致为( )A. B.C. D.考点07 函数零点及其应用一、单选题1.(2024·全国新Ⅰ卷·高考真题)当时,曲线与的交点个数为()A.3 B.4 C.6 D.82.(2024·全国新Ⅱ卷·高考真题)设函数,,当时,曲线与恰有一个交点,则()A. B. C.1 D.23.(2024·全国新Ⅱ卷·高考真题)(多选)对于函数和,下列说法中正确的有()A.与有相同的零点 B.与有相同的最大值C.与有相同的最小正周期 D.与的图象有相同的对称轴4.(2021·天津·高考真题)设,函数,若在区间内恰有6个零点,则a的取值范围是()A. B.C. D.5.(2020·天津·高考真题)已知函数若函数恰有4个零点,则的取值范围是()A. B.C. D.二、填空题6.(2024·全国甲卷·高考真题)曲线与在上有两个不同的交点,则的取值范围为 .7.(2024·天津·高考真题)若函数恰有一个零点,则的取值范围为 .8.(2023·天津·高考真题)设,函数,若恰有两个零点,则的取值范围为 .9.(2023·全国新Ⅰ卷·高考真题)已知函数在区间有且仅有3个零点,则的取值范围是.10.(2022·天津·高考真题)设,对任意实数x,记.若至少有3个零点,则实数的取值范围为 .11.(2022·北京·高考真题)若函数的一个零点为,则;.12.(2021·北京·高考真题)已知函数,给出下列四个结论:①若,恰 有2个零点;②存在负数,使得恰有1个零点;③存在负数,使得恰有3个零点;④存在正数,使得恰有3个零点.其中所有正确结论的序号是.考点08 函数模型1.(2024·北京·高考真题)生物丰富度指数 是河流水质的一个评价指标,其中分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d越大,水质越好.如果某河流治理前后的生物种类数没有变化,生物个体总数由变为,生物丰富度指数由提高到,则()A. B.C. D.2.(2022·北京·高考真题)在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和的关系,其中T表示温度,单位是K;P表示压强,单位是.下列结论中正确的是()A.当,时,二氧化碳处于液态B.当,时,二氧化碳处于气态C.当,时,二氧化碳处于超临界状态D.当,时,二氧化碳处于超临界状态3.(2021·全国甲卷·高考真题)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()()A.1.5 B.1.2 C.0.8 D.0.621世纪教育网www.21cnjy.com 精品试卷·第 2 页 (共 2 页)21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台专题14 指数、对数、幂函数、函数图象、函数零点及函数模型的应用考点01 指数函数及其应用1.(2023·全国乙卷·高考真题)已知是偶函数,则()A. B. C.1 D.2【答案】D【分析】根据偶函数的定义运算求解.【详解】因为为偶函数,则,又因为不恒为0,可得,即,则,即,解得.故选:D.2.(2023·全国新Ⅰ卷·高考真题)设函数在区间上单调递减,则的取值范围是()A. B.C. D.【答案】D【分析】利用指数型复合函数单调性,判断列式计算作答.【详解】函数在R上单调递增,而函数在区间上单调递减,则有函数在区间上单调递减,因此,解得,所以的取值范围是.故选:D3.(2022·北京·高考真题)已知函数,则对任意实数x,有()A. B.C. D.【答案】C【分析】直接代入计算,注意通分不要计算错误.【详解】,故A错误,C正确;,不是常数,故BD错误;故选:C.考点02 对数运算及指对互化1.(2024·全国甲卷·高考真题)已知且,则 .【答案】64【分析】将利用换底公式转化成来表示即可求解.【详解】由题,整理得,或,又,所以,故故答案为:64.2.(2023·北京·高考真题)已知函数,则.【答案】1【分析】根据给定条件,把代入,利用指数、对数运算计算作答.【详解】函数,所以.故答案为:13.(2022·天津·高考真题)化简的值为( )A.1 B.2 C.4 D.6【答案】B【分析】根据对数的性质可求代数式的值.【详解】原式,故选:B4.(2022·浙江·高考真题)已知,则()A.25 B.5 C. D.【答案】C【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出.【详解】因为,,即,所以.故选:C.5.(2022·全国乙卷·高考真题)若是奇函数,则 , .【答案】 ; .【分析】根据奇函数的定义即可求出.【详解】[方法一]:奇函数定义域的对称性若,则的定义域为,不关于原点对称若奇函数的有意义,则且且,函数为奇函数,定义域关于原点对称,,解得,由得,,,故答案为:;.[方法二]:函数的奇偶性求参函数为奇函数[方法三]:因为函数为奇函数,所以其定义域关于原点对称.由可得,,所以,解得:,即函数的定义域为,再由可得,.即,在定义域内满足,符合题意.故答案为:;.6.(2021·天津·高考真题)若,则()A. B. C.1 D.【答案】C【分析】由已知表示出,再由换底公式可求.【详解】,,.故选:C.7.(2020·全国·高考真题)设,则()A. B. C. D.【答案】B【分析】根据已知等式,利用指数对数运算性质即可得解【详解】由可得,所以,所以有,故选:B.【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.考点03 对数函数及其应用1.(2024·北京·高考真题)已知,是函数的图象上两个不同的点,则()A. B.C. D.【答案】B【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB;举例判断CD即可.【详解】由题意不妨设,因为函数是增函数,所以,即,对于选项AB:可得,即,根据函数是增函数,所以,故B正确,A错误;对于选项D:例如,则,可得,即,故D错误;对于选项C:例如,则,可得,即,故C错误,故选:B.2.(2024·全国新Ⅰ卷·高考真题)已知函数在R上单调递增,则a的取值范围是()A. B. C. D.【答案】B【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为在上单调递增,且时,单调递增,则需满足,解得,即a的范围是.故选:B.3.(2020·全国新Ⅱ卷·高考真题)已知函数在上单调递增,则的取值范围是()A. B. C. D.【答案】D【分析】首先求出的定义域,然后求出的单调递增区间即可.【详解】由得或所以的定义域为因为在上单调递增所以在上单调递增所以故选:D【点睛】在求函数的单调区间时一定要先求函数的定义域.4.(2020·全国·高考真题)设函数,则f(x)()A.是偶函数,且在单调递增 B.是奇函数,且在单调递减C.是偶函数,且在单调递增 D.是奇函数,且在单调递减【答案】D【分析】根据奇偶性的定义可判断出为奇函数,排除AC;当时,利用函数单调性的性质可判断出单调递增,排除B;当时,利用复合函数单调性可判断出单调递减,从而得到结果.【详解】由得定义域为,关于坐标原点对称,又,为定义域上的奇函数,可排除AC;当时,,在上单调递增,在上单调递减,在上单调递增,排除B;当时,,在上单调递减,在定义域内单调递增,根据复合函数单调性可知:在上单调递减,D正确.故选:D.【点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据与的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.5.(2020·北京·高考真题)函数的定义域是.【答案】【分析】根据分母不为零、真数大于零列不等式组,解得结果.【详解】由题意得,故答案为:【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.考点04 幂函数1.(2024·天津·高考真题)设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】C【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【详解】根据立方的性质和指数函数的性质,和都当且仅当,所以二者互为充要条件.故选:C.2.(2023·北京·高考真题)下列函数中,在区间上单调递增的是()A. B.C. D.【答案】C【分析】利用基本初等函数的单调性,结合复合函数的单调性判断ABC,举反例排除D即可.【详解】对于A,因为在上单调递增,在上单调递减,所以在上单调递减,故A错误;对于B,因为在上单调递增,在上单调递减,所以在上单调递减,故B错误;对于C,因为在上单调递减,在上单调递减,所以在上单调递增,故C正确;对于D,因为,,显然在上不单调,D错误.故选:C.3.(2020·江苏·高考真题)已知y=f(x)是奇函数,当x≥0时, ,则f(-8)的值是.【答案】【分析】先求,再根据奇函数求【详解】,因为为奇函数,所以故答案为:【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题.考点05 指对幂函数值大小比较1.(2024·天津·高考真题)若,则的大小关系为()A. B. C. D.【答案】B【分析】利用指数函数和对数函数的单调性分析判断即可.【详解】因为在上递增,且,所以,所以,即,因为在上递增,且,所以,即,所以,故选:B2.(2023·全国甲卷·高考真题)已知函数.记,则()A. B. C. D.【答案】A【分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可.【详解】令,则开口向下,对称轴为,因为,而,所以,即由二次函数性质知,因为,而,即,所以,综上,,又为增函数,故,即.故选:A.3.(2023·天津·高考真题)设,则的大小关系为()A. B.C. D.【答案】D【分析】根据对应幂、指数函数的单调性判断大小关系即可.【详解】由在R上递增,则,由在上递增,则.所以.故选:D4.(2022·天津·高考真题)已知,,,则( )A. B. C. D.【答案】C【分析】利用幂函数、对数函数的单调性结合中间值法可得出、、的大小关系.【详解】因为,故.故答案为:C.5.(2022·全国甲卷·高考真题)已知,则()A. B. C. D.【答案】A【分析】法一:根据指对互化以及对数函数的单调性即可知,再利用基本不等式,换底公式可得,,然后由指数函数的单调性即可解出.【详解】[方法一]:(指对数函数性质)由可得,而,所以,即,所以.又,所以,即,所以.综上,.[方法二]:【最优解】(构造函数)由,可得.根据的形式构造函数 ,则,令,解得 ,由 知 .在 上单调递增,所以 ,即 ,又因为 ,所以 .故选:A.【点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用的形式构造函数,根据函数的单调性得出大小关系,简单明了,是该题的最优解.6.(2022·全国新Ⅰ卷·高考真题)设,则()A. B. C. D.【答案】C【分析】构造函数, 导数判断其单调性,由此确定的大小.【详解】方法一:构造法设,因为,当时,,当时,所以函数在单调递减,在上单调递增,所以,所以,故,即,所以,所以,故,所以,故,设,则,令,,当时,,函数单调递减,当时,,函数单调递增,又,所以当时,,所以当时,,函数单调递增,所以,即,所以故选:C.方法二:比较法解: , , ,① ,令则 ,故 在 上单调递减,可得 ,即 ,所以 ;② ,令则 ,令 ,所以 ,所以 在 上单调递增,可得 ,即 ,所以 在 上单调递增,可得 ,即 ,所以故7.(2021·天津·高考真题)设,则a,b,c的大小关系为()A. B. C. D.【答案】D【分析】根据指数函数和对数函数的性质求出的范围即可求解.【详解】,,,,,,.故选:D.8.(2021·全国新Ⅱ卷·高考真题)已知,,,则下列判断正确的是()A. B. C. D.【答案】C【分析】对数函数的单调性可比较、与的大小关系,由此可得出结论.【详解】,即.故选:C.9.(2020·天津·高考真题)设,则的大小关系为()A. B. C. D.【答案】D【分析】利用指数函数与对数函数的性质,即可得出的大小关系.【详解】因为,,,所以.故选:D.【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:,当时,函数递增;当时,函数递减;(2)利用对数函数的单调性:,当时,函数递增;当时,函数递减;(3)借助于中间值,例如:0或1等.10.(2020·全国·高考真题)已知55A.a【答案】A【分析】由题意可得、、,利用作商法以及基本不等式可得出、的大小关系,由,得,结合可得出,由,得,结合,可得出,综合可得出、、的大小关系.【详解】由题意可知、、,,;由,得,由,得,,可得;由,得,由,得,,可得.综上所述,.故选:A.【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.11.(2020·全国·高考真题)设,,,则()A. B. C. D.【答案】A【分析】分别将,改写为,,再利用单调性比较即可.【详解】因为,,所以.故选:A.【点晴】本题考查对数式大小的比较,考查学生转化与化归的思想,是一道中档题.12.(2020·全国·高考真题)若,则()A. B. C. D.【答案】A【分析】将不等式变为,根据的单调性知,以此去判断各个选项中真数与的大小关系,进而得到结果.【详解】由得:,令,为上的增函数,为上的减函数,为上的增函数,,,,,则A正确,B错误;与的大小不确定,故CD无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到的大小关系,考查了转化与化归的数学思想.考点06 函数图象1.(2024·全国甲卷·高考真题)函数在区间的图象大致为()A. B.C. D.【答案】B【分析】利用函数的奇偶性可排除A、C,代入可得,可排除D.【详解】,又函数定义域为,故该函数为偶函数,可排除A、C,又,故可排除D.故选:B.2.(2023·天津·高考真题)已知函数的部分图象如下图所示,则的解析式可能为()

A. B.C. D.【答案】D【分析】由图知函数为偶函数,应用排除,先判断B中函数的奇偶性,再判断A、C中函数在上的函数符号排除选项,即得答案.【详解】由图知:函数图象关于y轴对称,其为偶函数,且,由且定义域为R,即B中函数为奇函数,排除;当时、,即A、C中上函数值为正,排除;故选:D3.(2022·全国乙卷·高考真题)如图是下列四个函数中的某个函数在区间的大致图像,则该函数是()A. B. C. D.【答案】A【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设,则,故排除B;设,当时,,所以,故排除C;设,则,故排除D.故选:A.4.(2022·全国甲卷·高考真题)函数在区间的图象大致为()A. B.C. D.【答案】A【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令,则,所以为奇函数,排除BD;又当时,,所以,排除C.故选:A.5.(2022·天津·高考真题)函数的图像为()A. B.C. D.【答案】D【分析】分析函数的定义域、奇偶性、单调性及其在上的函数值符号,结合排除法可得出合适的选项.【详解】函数的定义域为,且,函数为奇函数,A选项错误;又当时,,C选项错误;当时,函数单调递增,故B选项错误;故选:D.6.(2021·浙江·高考真题)已知函数,则图象为如图的函数可能是()A. B.C. D.【答案】D【分析】由函数的奇偶性可排除A、B,结合导数判断函数的单调性可判断C,即可得解.【详解】对于A,,该函数为非奇非偶函数,与函数图象不符,排除A;对于B,,该函数为非奇非偶函数,与函数图象不符,排除B;对于C,,则,当时,,与图象不符,排除C.故选:D.7.(2020·天津·高考真题)函数的图象大致为()A. B.C. D.【答案】A【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:,则函数为奇函数,其图象关于坐标原点对称,选项CD错误;当时,,选项B错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.8.(2020·浙江·高考真题)函数y=xcosx+sinx在区间[–π,π]的图象大致为( )A. B.C. D.【答案】A【分析】首先确定函数的奇偶性,然后结合函数在处的函数值排除错误选项即可确定函数的图象.【详解】因为,则,即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD错误;且时,,据此可知选项B错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.考点07 函数零点及其应用一、单选题1.(2024·全国新Ⅰ卷·高考真题)当时,曲线与的交点个数为()A.3 B.4 C.6 D.8【答案】C【分析】画出两函数在上的图象,根据图象即可求解【详解】因为函数的的最小正周期为,函数的最小正周期为,所以在上函数有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C2.(2024·全国新Ⅱ卷·高考真题)设函数,,当时,曲线与恰有一个交点,则()A. B. C.1 D.2【答案】D【分析】解法一:令,分析可知曲线与恰有一个交点,结合偶函数的对称性可知该交点只能在y轴上,即可得,并代入检验即可;解法二:令,可知为偶函数,根据偶函数的对称性可知的零点只能为0,即可得,并代入检验即可.【详解】解法一:令,即,可得,令,原题意等价于当时,曲线与恰有一个交点,注意到均为偶函数,可知该交点只能在y轴上,可得,即,解得,若,令,可得因为,则,当且仅当时,等号成立,可得,当且仅当时,等号成立,则方程有且仅有一个实根0,即曲线与恰有一个交点,所以符合题意;综上所述:.解法二:令,原题意等价于有且仅有一个零点,因为,则为偶函数,根据偶函数的对称性可知的零点只能为0,即,解得,若,则,又因为当且仅当时,等号成立,可得,当且仅当时,等号成立,即有且仅有一个零点0,所以符合题意;故选:D.3.(2024·全国新Ⅱ卷·高考真题)(多选)对于函数和,下列说法中正确的有()A.与有相同的零点 B.与有相同的最大值C.与有相同的最小正周期 D.与的图象有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令,解得,即为零点,令,解得,即为零点,显然零点不同,A选项错误;B选项,显然,B选项正确;C选项,根据周期公式,的周期均为,C选项正确;D选项,根据正弦函数的性质的对称轴满足,的对称轴满足,显然图像的对称轴不同,D选项错误.故选:BC4.(2021·天津·高考真题)设,函数,若在区间内恰有6个零点,则a的取值范围是()A. B.C. D.【答案】A【分析】由最多有2个根,可得至少有4个根,分别讨论当和时两个函数零点个数情况,再结合考虑即可得出.【详解】最多有2个根,所以至少有4个根,由可得,由可得,(1)时,当时,有4个零点,即;当,有5个零点,即;当,有6个零点,即;(2)当时,,,当时,,无零点;当时,,有1个零点;当时,令,则,此时有2个零点;所以若时,有1个零点.综上,要使在区间内恰有6个零点,则应满足或或,则可解得a的取值范围是.【点睛】关键点睛:解决本题的关键是分成和两种情况分别讨论两个函数的零点个数情况.5.(2020·天津·高考真题)已知函数若函数恰有4个零点,则的取值范围是()A. B.C. D.【答案】D【分析】由,结合已知,将问题转化为与有个不同交点,分三种情况,数形结合讨论即可得到答案.【详解】注意到,所以要使恰有4个零点,只需方程恰有3个实根即可,令,即与的图象有个不同交点.因为,当时,此时,如图1,与有个不同交点,不满足题意;当时,如图2,此时与恒有个不同交点,满足题意;当时,如图3,当与相切时,联立方程得,令得,解得(负值舍去),所以.综上,的取值范围为.故选:D.【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题.二、填空题6.(2024·全国甲卷·高考真题)曲线与在上有两个不同的交点,则的取值范围为 .【答案】【分析】将函数转化为方程,令,分离参数,构造新函数结合导数求得单调区间,画出大致图形数形结合即可求解.【详解】令,即,令则,令得,当时,,单调递减,当时,,单调递增,,因为曲线与在上有两个不同的交点,所以等价于与有两个交点,所以.故答案为:7.(2024·天津·高考真题)若函数恰有一个零点,则的取值范围为 .【答案】【分析】结合函数零点与两函数的交点的关系,构造函数与,则两函数图象有唯一交点,分、与进行讨论,当时,计算函数定义域可得或,计算可得时,两函数在轴左侧有一交点,则只需找到当时,在轴右侧无交点的情况即可得;当时,按同一方式讨论即可得.【详解】令,即,由题可得,当时,,有,则,不符合要求,舍去;当时,则,即函数与函数有唯一交点,由,可得或,当时,则,则,即,整理得,当时,即,即,当,或(正值舍去),当时,或,有两解,舍去,即当时,在时有唯一解,则当时,在时需无解,当,且时,由函数关于对称,令,可得或,且函数在上单调递减,在上单调递增,令,即,故时,图象为双曲线右支的轴上方部分向右平移所得,由的渐近线方程为,即部分的渐近线方程为,其斜率为,又,即在时的斜率,令,可得或(舍去),且函数在上单调递增,故有,解得,故符合要求;当时,则,即函数与函数有唯一交点,由,可得或,当时,则,则,即,整理得,当时,即,即,当,(负值舍去)或,当时,或,有两解,舍去,即当时,在时有唯一解,则当时,在时需无解,当,且时,由函数关于对称,令,可得或,且函数在上单调递减,在上单调递增,同理可得:时,图象为双曲线左支的轴上方部分向左平移所得,部分的渐近线方程为,其斜率为,又,即在时的斜率,令,可得或(舍去),且函数在上单调递减,故有,解得,故符合要求;综上所述,.故答案为:.【点睛】关键点点睛:本题关键点在于将函数的零点问题转化为函数与函数的交点问题,从而可将其分成两个函数研究.8.(2023·天津·高考真题)设,函数,若恰有两个零点,则的取值范围为 .【答案】【分析】根据绝对值的意义,去掉绝对值,求出零点,再根据根存在的条件即可判断的取值范围.【详解】(1)当时,,即,若时,,此时成立;若时,或,若方程有一根为,则,即且;若方程有一根为,则,解得:且;若时,,此时成立.(2)当时,,即,若时,,显然不成立;若时,或,若方程有一根为,则,即;若方程有一根为,则,解得:;若时,,显然不成立;综上,当时,零点为,;当时,零点为,;当时,只有一个零点;当时,零点为,;当时,只有一个零点;当时,零点为,;当时,零点为.所以,当函数有两个零点时,且.故答案为:.【点睛】本题的解题关键是根据定义去掉绝对值,求出方程的根,再根据根存在的条件求出对应的范围,然后根据范围讨论根(或零点)的个数,从而解出.9.(2023·全国新Ⅰ卷·高考真题)已知函数在区间有且仅有3个零点,则的取值范围是.【答案】【分析】令,得有3个根,从而结合余弦函数的图像性质即可得解.【详解】因为,所以,令,则有3个根,令,则有3个根,其中,结合余弦函数的图像性质可得,故,故答案为:.10.(2022·天津·高考真题)设,对任意实数x,记.若至少有3个零点,则实数的取值范围为 .【答案】【分析】设,,分析可知函数至少有一个零点,可得出,求出的取值范围,然后对实数的取值范围进行分类讨论,根据题意可得出关于实数的不等式,综合可求得实数的取值范围.【详解】设,,由可得.要使得函数至少有个零点,则函数至少有一个零点,则,解得或.①当时,,作出函数、的图象如下图所示:此时函数只有两个零点,不合乎题意;②当时,设函数的两个零点分别为、,要使得函数至少有个零点,则,所以,,解得;③当时,,作出函数、的图象如下图所示:由图可知,函数的零点个数为,合乎题意;④当时,设函数的两个零点分别为、,要使得函数至少有个零点,则,可得,解得,此时.综上所述,实数的取值范围是.故答案为:.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.11.(2022·北京·高考真题)若函数的一个零点为,则;.【答案】 1【分析】先代入零点,求得A的值,再将函数化简为,代入自变量,计算即可.【详解】∵,∴∴故答案为:1,12.(2021·北京·高考真题)已知函数,给出下列四个结论:①若,恰 有2个零点;②存在负数,使得恰有1个零点;③存在负数,使得恰有3个零点;④存在正数,使得恰有3个零点.其中所有正确结论的序号是.【答案】①②④【分析】由可得出,考查直线与曲线的左、右支分别相切的情形,利用方程思想以及数形结合可判断各选项的正误.【详解】对于①,当时,由,可得或,①正确;对于②,考查直线与曲线相切于点,对函数求导得,由题意可得,解得,所以,存在,使得只有一个零点,②正确;对于③,当直线过点时,,解得,所以,当时,直线与曲线有两个交点,若函数有三个零点,则直线与曲线有两个交点,直线与曲线有一个交点,所以,,此不等式无解,因此,不存在,使得函数有三个零点,③错误;对于④,考查直线与曲线相切于点,对函数求导得,由题意可得,解得,所以,当时,函数有三个零点,④正确.故答案为:①②④.【点睛】思路点睛:已知函数的零点或方程的根的情况,求解参数的取值范围问题的本质都是研究函数的零点问题,求解此类问题的一般步骤:(1)转化,即通过构造函数,把问题转化成所构造函数的零点问题;(2)列式,即根据函数的零点存在定理或结合函数的图象列出关系式;(3)得解,即由列出的式子求出参数的取值范围.考点08 函数模型1.(2024·北京·高考真题)生物丰富度指数 是河流水质的一个评价指标,其中分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d越大,水质越好.如果某河流治理前后的生物种类数没有变化,生物个体总数由变为,生物丰富度指数由提高到,则()A. B.C. D.【答案】D【分析】根据题意分析可得,消去即可求解.【详解】由题意得,则,即,所以.故选:D.2.(2022·北京·高考真题)在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和的关系,其中T表示温度,单位是K;P表示压强,单位是.下列结论中正确的是()A.当,时,二氧化碳处于液态B.当,时,二氧化碳处于气态C.当,时,二氧化碳处于超临界状态D.当,时,二氧化碳处于超临界状态【答案】D【分析】根据与的关系图可得正确的选项.【详解】当,时,,此时二氧化碳处于固态,故A错误.当,时,,此时二氧化碳处于液态,故B错误.当,时,与4非常接近,故此时二氧化碳处于固态,对应的是非超临界状态,故C错误.当,时,因, 故此时二氧化碳处于超临界状态,故D正确.故选:D3.(2021·全国甲卷·高考真题)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()()A.1.5 B.1.2 C.0.8 D.0.6【答案】C【分析】根据关系,当时,求出,再用指数表示,即可求解.【详解】由,当时,,则.故选:C.21世纪教育网www.21cnjy.com 精品试卷·第 2 页 (共 2 页)21世纪教育网(www.21cnjy.com)

展开

相关推荐: