导航菜单
首页 >  对称矩阵求特征值技巧考研  > 特征值(考研)

特征值(考研)

特征值

特征值、特征向量计算

定义法 A α = λ α A\alpha=\lambda\alphaAα=λα ∣ λ E − A ∣ = 0 |\lambda E - A|=0∣λE−A∣=0P−1A P = B P^{-1}AP=BP−1AP=BAα=λα⇒B(P− 1 α)=λ(P− 1 α) A\alpha=\lambda\alpha\Rightarrow B(P^{-1}\alpha)=\lambda(P^{-1}\alpha) Aα=λα⇒B(P−1α)=λ(P−1α)Bα=λα⇒A(Pα)=λ(Pα) B\alpha=\lambda\alpha\Rightarrow A(P\alpha)=\lambda(P\alpha) Bα=λα⇒A(Pα)=λ(Pα)

相似P−1A P = B P^{-1}AP=BP−1AP=B

性质∣A∣=∣B∣ |A|=|B| ∣A∣=∣B∣r(A)=r(B) r(A)=r(B) r(A)=r(B)r ( B ) = r (P−1A P ) = r ( A P ) = r ( A ) r(B)=r(P^{-1}AP)=r(AP)=r(A)r(B)=r(P−1AP)=r(AP)=r(A)∣λE−A∣=∣λE−B∣⇒λA=λB |\lambda E-A|=|\lambda E - B|\Rightarrow\lambda_A=\lambda_B ∣λE−A∣=∣λE−B∣⇒λA​=λB​∑ai i =∑bi i\sum a_{ii}=\sum b_{ii} ∑aii​=∑bii​∑λ i= ∑aii\sum\lambda_i=\sum a_{ii}∑λi​=∑aii​ 求A nA^nAn

A ∼ B A\sim BA∼B

⇒ A + k E ∼ B + k E \Rightarrow A+kE\sim B+kE⇒A+kE∼B+kE ⇒ ∣ A + k E ∣ = ∣ B + k E ∣ \Rightarrow |A+kE|=|B+kE|⇒∣A+kE∣=∣B+kE∣ ⇒ r ( A + k E ) = r ( B + k E ) \Rightarrow r(A+kE)=r(B+kE)⇒r(A+kE)=r(B+kE) ⇒λA+kE=λB+kE\Rightarrow \lambda_{A+kE}=\lambda_{B+kE}⇒λA+kE​=λB+kE​

A ∼ B , B ∼ C ⇒ A ∼ C A\sim B,B\sim C\Rightarrow A\sim CA∼B,B∼C⇒A∼C

证明题(证明 A AA和 C CC相似,找一个中介 B BB,通常为对角矩阵)

A AA可相似对角化

A ∼ Λ ⇔ ∃ A\sim \Lambda\Leftrightarrow \existA∼Λ⇔∃可逆矩阵 P PP使得P−1A P = Λ P^{-1}AP=\LambdaP−1AP=Λ A P = P Λ AP=P\LambdaAP=PΛ A(γ 1  γ 2  γ 3 ) =(γ 1  γ 2  γ 3 )[a1000a2000a3]A\left(\begin{array}{r} \gamma_1\ \gamma_2\ \gamma_3 \end{array}\right)=\left(\begin{array}{r} \gamma_1\ \gamma_2\ \gamma_3 \end{array}\right)\left[\begin{array}{cccc} a_{1} & 0 & 0 \\ 0 & a_{2} & 0\\ 0 & 0 & a_{3} \end{array}\right] A(γ1​ γ2​ γ3​​)=(γ1​ γ2​ γ3​​)⎣⎡​a1​00​0a2​0​00a3​​⎦⎤​ A(γ 1  γ 2  γ 3 ) =(a 1 γ 1  a 2 γ 2  a 3 γ 3 )A\left(\begin{array}{r} \gamma_1\ \gamma_2\ \gamma_3 \end{array}\right)=\left(\begin{array}{r} a_1\gamma_1\ a_2\gamma_2\ a_3\gamma_3 \end{array}\right) A(γ1​ γ2​ γ3​​)=(a1​γ1​ a2​γ2​ a3​γ3​​) Aγ 1=a 1 γ 1, Aγ 2=a 2 γ 2, Aγ 3=a 3 γ 3A\gamma_1=a_1\gamma_1,A\gamma_2=a_2\gamma_2,A\gamma_3=a_3\gamma_3Aγ1​=a1​γ1​,Aγ2​=a2​γ2​,Aγ3​=a3​γ3​对角矩阵是 A AA的三个特征值 P PP矩阵的列向量为特征向量(只有和对角矩阵相似的时候)

A AA和对角矩阵相似

A ∼ Λ ⇔ A A\sim \Lambda\Leftrightarrow AA∼Λ⇔A有 n nn个无关的特征向量充分条件A A A有n n n个不同的特征值AT=A A^T=A AT=A若λi \lambda_i λi​是k k k重特征值,那λi \lambda_i λi​必有k k k个无关的特征向量r (λ iE − A ) = n − k r(\lambda_i E-A)=n-kr(λi​E−A)=n−k (λ iE − A ) x = 0 (\lambda_i E-A)x=0(λi​E−A)x=0

特征值性质

不同特征值的特征向量线性无关 k kk重特征值最多有 k kk个线性无关的特征向量 ∣ A ∣ = ∏Λ i|A|=\prod\Lambda_i∣A∣=∏Λi​ ∑λ i= ∑aii\sum\lambda_i=\sum a_{ii}∑λi​=∑aii​

实对称矩阵

A AA必与对角矩阵相似不同特征值的特征向量相互正交内积为0⇒ \Rightarrow ⇒齐次方程⇒ \Rightarrow ⇒求α \alpha α 用正交矩阵相似对角化Q−1A Q = Λ Q^{-1}AQ=\LambdaQ−1AQ=Λ特征值都是实数 A =[a11…11a1…1⋮⋮⋮ ⋮111…a]A=\left[\begin{array}{cccc} a & 1 & 1 & \dots & 1 \\ 1 & a & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ & \vdots \\ 1 & 1 & 1 & \dots & a \\ \end{array}\right] A=⎣⎢⎢⎢⎡​a1⋮1​1a⋮1​11⋮1​…… …​11⋮a​⎦⎥⎥⎥⎤​A=[a − 10 0 … 0 0a − 10 … 0 ⋮⋮⋮  ⋮0 0 0 …a − 1] +[ 1 1 1 … 1 1 1 1 … 1 ⋮⋮⋮  ⋮1 1 1 … 1 ] A=\left[\begin{array}{cccc} a - 1 & 0 & 0 & \dots & 0 \\ 0 & a - 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ & \vdots \\ 0 & 0 & 0 & \dots & a-1 \\ \end{array}\right]+\left[\begin{array}{cccc} 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ & \vdots \\ 1 & 1 & 1 & \dots & 1 \\ \end{array}\right]A=⎣⎢⎢⎢⎡​a−10⋮0​0a−1⋮0​00⋮0​…… …​00⋮a−1​⎦⎥⎥⎥⎤​+⎣⎢⎢⎢⎡​11⋮1​11⋮1​11⋮1​…… …​11⋮1​⎦⎥⎥⎥⎤​A A A是对角矩阵,A A A一定与对角矩阵相似B:n,0,0,…,0 B:n,0,0,\dots,0 B:n,0,0,…,0A:n+a−1,a−1,a−1,…,a−1 A:n+a-1,a-1,a-1,\dots,a-1 A:n+a−1,a−1,a−1,…,a−1

求正交矩阵 Q QQ使Q−1A Q = Λ Q^{-1}AQ=\LambdaQ−1AQ=Λ

求特征值求特征向量改造特征向量λi≠λj \lambda_i \neq \lambda_j λi​​=λj​ 只需单位化λi=λj \lambda_i = \lambda_j λi​=λj​ 若已正交,只单位化若不正交, S c h m i d t SchmidtSchmidt正交化 构造正交矩阵 Q QQQ− 1 AQ=QTAQ=Λ Q^{-1}AQ=Q^{T}AQ=\Lambda Q−1AQ=QTAQ=Λ

S c h m i d t SchmidtSchmidt正交化

α 1,α 2,α 3\alpha_1,\alpha_2,\alpha_3α1​,α2​,α3​无关β 1=α 1\beta_1=\alpha_1β1​=α1​β 2=α 2− (α2,β1)(β1,β1) β 1\beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1β2​=α2​−(β1​,β1​)(α2​,β1​)​β1​β 3=α 3− (α3,β1)(β1,β1) β 1− (α3,β2)(β2,β2) β 2\beta_3=\alpha_3-\frac{(\alpha_3,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\frac{(\alpha_3,\beta_2)}{(\beta_2,\beta_2)}\beta_2β3​=α3​−(β1​,β1​)(α3​,β1​)​β1​−(β2​,β2​)(α3​,β2​)​β2​γ i= βi∣βi∣\gamma_i = \frac{\beta_i}{|\beta_i|}γi​=∣βi​∣βi​​

特征值、特征向量定义

A − nA-n A−n阶, α\alpha α是 nn n维非 00 0列向量,若 A α = λ αA\alpha=\lambda\alpha Aα=λα,称 λ\lambda λ是 矩阵 AA A的特征值, α\alpha α是矩阵 AA A属于特征值 λ\lambda λ的特征向量。

若Aα=λα A\alpha=\lambda\alpha Aα=λα,α≠0 \alpha\neq 0 α​=0,对∀k≠0 \forall k\neq 0 ∀k​=0,有A(kα)=λ(kα) A(k\alpha)=\lambda(k\alpha) A(kα)=λ(kα)若α1,α2 \alpha_1,\alpha_2 α1​,α2​是A A A关于特征值λ \lambda λ的特征向量,k1α1+k2α2≠0 k_1\alpha_1+k_2\alpha_2\neq 0 k1​α1​+k2​α2​​=0仍是A A A关于特征值λ \lambda λ的特征向量

A α = λ α , α ≠ 0A\alpha=\lambda\alpha,\alpha\neq 0 Aα=λα,α​=0

(λE−A)α=0,α≠0 (\lambda E-A)\alpha=0,\alpha\neq 0 (λE−A)α=0,α​=0α \alpha α是(λE−A)x=0 (\lambda E-A)x=0 (λE−A)x=0的非零解∣λE−A∣=0 |\lambda E - A|=0 ∣λE−A∣=0求特征值λi \lambda_i λi​(共n n n个)由(λiE−A)x=0 (\lambda_i E-A)x=0 (λi​E−A)x=0求基础解系矩阵A A A属于特征值λi \lambda_i λi​线性无关的特征向量

∣ λ E − A ∣ =λ3 − (a11 +a22 +a33 )λ2 + S λ − ∣ A ∣|\lambda E - A|=\lambda^3-(a_{11}+a_{22}+a_{33})\lambda^2+S\lambda-|A| ∣λE−A∣=λ3−(a11​+a22​+a33​)λ2+Sλ−∣A∣

S=∣a 11 a 12 a 21 a 22 ∣+∣a 22 a 23 a 32 a 33 ∣+∣a 11 a 13 a 31 a 33 ∣ S=\left|\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right|+\left|\begin{array}{cc} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array}\right|+\left|\begin{array}{cc} a_{11} & a_{13} \\ a_{31} & a_{33} \end{array}\right| S=∣∣∣∣​a11​a21​​a12​a22​​∣∣∣∣​+∣∣∣∣​a22​a32​​a23​a33​​∣∣∣∣​+∣∣∣∣​a11​a31​​a13​a33​​∣∣∣∣​若r(A)=1 r(A)=1 r(A)=1∣ λ E − A ∣ =λ 3− (a 11+a 22+a 33) |\lambda E - A|=\lambda^3-(a_{11}+a_{22}+a_{33})∣λE−A∣=λ3−(a11​+a22​+a33​)λ 2=λ 2[ λ − (a 11+a 22+a 33) ] \lambda^2=\lambda^2[\lambda-(a_{11}+a_{22}+a_{33})]λ2=λ2[λ−(a11​+a22​+a33​)]λ 1=a 11+a 22+a 33\lambda_1=a_{11}+a_{22}+a_{33}λ1​=a11​+a22​+a33​,λ 2=λ 3= 0 \lambda_2=\lambda_3=0λ2​=λ3​=0 上述结论可以推广到n n n阶 λ 1=a 11+a 22+ ⋯ +ann,λ 2= ⋯ =λ n= 0 \lambda_1=a_{11}+a_{22}+\dots+a_{nn},\lambda_2=\dots=\lambda_n=0λ1​=a11​+a22​+⋯+ann​,λ2​=⋯=λn​=0A A AA+kE A+kE A+kEA− 1A^{-1} A−1A∗ A^* A∗An A^n AnP− 1 AP P^{-1}AP P−1APλ \lambda λλ+k \lambda+k λ+k1λ \frac{1}{\lambda} λ1​1λ/A/ \frac{1}{\lambda}{/A/} λ1​/A/λn \lambda^n λnλ \lambda λα \alpha αα \alpha αα \alpha αα \alpha αα \alpha αP− 1 α P^{-1}\alpha P−1α

A ∗ A=∣A∣EA^*A=|A|EA∗A=∣A∣EA ∗ Aα=∣A∣αA^*A\alpha=|A|\alphaA∗Aα=∣A∣αA ∗ λα=∣A∣αA^*\lambda\alpha=|A|\alphaA∗λα=∣A∣αA ∗ α= ∣ A ∣λ αA^*\alpha=\frac{|A|}{\lambda}\alphaA∗α=λ∣A∣​α

例题

α 1,α 2\alpha_1,\alpha_2α1​,α2​是 A AA不同特征值的特征向量,证明α 1+α 2\alpha_1+\alpha_2α1​+α2​不是 A AA的特征向量. A − 2 A-2A−2阶,α 1,α 2\alpha_1,\alpha_2α1​,α2​二维线性无关, Aα 1= 0 , Aα 2= 2α 1+α 2A\alpha_1=0,A\alpha_2=2\alpha_1+\alpha_2Aα1​=0,Aα2​=2α1​+α2​,求 A AA的特征值、特征向量.定义法相似

相关推荐: