设轮111转动的角度为θ 1 \theta_1θ1,轮111的转矩方程为J 1d2θ1dt2+f 1dθ1dt+M 1= M J_1\frac{\text{d}^2\theta_1}{\text{d}t^2}+f_1\frac{\text{d}\theta_1}{\text{d}t}+M_1=MJ1dt2d2θ1+f1dtdθ1+M1=M 轮2的转矩方程为J 2d2θdt2+f 2dθdt=M 2J_2\frac{\text{d}^2\theta}{\text{d}t^2}+f_2\frac{\text{d}\theta}{\text{d}t}=M_2J2dt2d2θ+f2dtdθ=M2 对上述两式取拉普拉斯变换,则 s (J 1s +f 1)θ 1( s ) +M 1( s ) = M ( s )s (J 2s +f 2) θ ( s ) =M 2( s ) s(J_1s+f_1)\theta_1(s)+M_1(s)=M(s) \\ s(J_2s+f_2)\theta(s)=M_2(s)s(J1s+f1)θ1(s)+M1(s)=M(s)s(J2s+f2)θ(s)=M2(s) 轮111和轮222做工相等,则M 1 θ 1=M 2θ M 2=M 1θ1 θ=M 1r2r1M_1\theta_1=M_2\theta \\ M_2=M_1\frac{\theta_1}{\theta}=M_1\frac{r_2}{r_1}M1θ1=M2θM2=M1θθ1=M1r1r2 联立上述方程,消去中间变量M 1 (s)M_1(s)M1(s)和M 2 (s)M_2(s)M2(s)可得 s (J 1s +f 1) r2r1θ ( s ) + s (J 2s +f 2) r1r2θ ( s ) = M ( s ) s(J_1s+f_1)\frac{r_2}{r_1}\theta(s)+s(J_2s+f_2)\frac{r_1}{r_2}\theta(s)=M(s)s(J1s+f1)r1r2θ(s)+s(J2s+f2)r2r1θ(s)=M(s) 整理可得系统的传递函数 θ(s)M(s)= r1r2s(J1s+f1)+s(J2s+f2)(r 1 r 2 )2\frac{\theta(s)}{M(s)}=\frac{\cfrac{r_1}{r_2}}{s(J_1s+f_1)+s(J_2s+f_2)(\cfrac{r_1}{r_2})^2}M(s)θ(s)=s(J1s+f1)+s(J2s+f2)(r2r1)2r2r1
2.来源:2010试题第4题,无括号里的要求(2021.12.20改)系统的开环传递函数 G ( s ) = 20K1s(s+20)(s+1+α)G(s)=\frac{20K_1}{s(s+20)(s+1+\alpha)}G(s)=s(s+20)(s+1+α)20K1 系统的闭环特征方程 Δ ( s )= s ( s + 20 ) ( s + 1 + α ) + 20K 1 =s 3+ ( 21 + α )s 2+ 20 ( 1 + α ) s + 20K 1\begin{aligned} \Delta(s) &= s(s+20)(s+1+\alpha)+20K_1 \\ &=s^3+(21+\alpha)s^2+20(1+\alpha)s+20K_1 \end{aligned}Δ(s)=s(s+20)(s+1+α)+20K1=s3+(21+α)s2+20(1+α)s+20K1 将s1 , 2=−3±j3s_{1,2}=-3\pm j3s1,2=−3±j3代入闭环特征方程,得到方程组 { −3−60α+20K1=0 − 6 − 60 α + 20K1 = 0 − 264 + 42 α = 0\left\{\begin{array}{l} \xcancel{-3-60\alpha+20K_1=0} \\ -6-60\alpha+20K_1=0 \\ -264+42\alpha=0 \end{array}\right.⎩⎨⎧−3−60α+20K1=0 −6−60α+20K1=0−264+42α=0 解得 {α =447 = 6.286K1 =2661140 = 19.007K1 =2661140 = 19.157\left\{\begin{array}{l} \alpha=\cfrac{44}{7}=6.286 \\ K_1=\cfrac{2661}{140}=19.007 \\ K_1=\cfrac{2661}{140}=19.157 \end{array}\right.⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧α=744=6.286K1=1402661=19.007K1=1402661=19.157
3.来源:2011试题第3题 (2021.12.18改)系统的闭环传递函数为 Φ ( s ) =1s+2\varPhi(s)=\frac{1}{s+2}Φ(s)=s+21 系统的误差传递函数Φ e( s ) = 1 − Φ ( s ) = s+1s+2=1 2⋅ s+112s+1\varPhi_e(s)=1-\varPhi(s)=\frac{s+1}{s+2}=\cfrac{1}{2}\cdot\frac{s+1}{\cfrac{1}{2}s+1}Φe(s)=1−Φ(s)=s+2s+1=21⋅21s+1s+1 误差传递函数的频率特性 {∣Φe ( j ω ) ∣ =12 ⋅ω2 + 114ω2 + 1∠Φe(jω)=−arctanω+arctan1 2 ω ∠Φe ( j ω ) = arctan ω − arctan 12 ω\left\{\begin{array}{l} |\varPhi_e(j\omega)|=\cfrac{1}{2}\cdot\cfrac{\sqrt{\omega^2+1}}{\sqrt{\cfrac{1}{4}\omega^2+1}} \\ \xcancel{\angle\varPhi_e(j\omega)=-\arctan \omega+\arctan\cfrac{1}{2}\omega} \\ \angle\varPhi_e(j\omega)=\arctan \omega-\arctan\cfrac{1}{2}\omega \end{array}\right.⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎧∣Φe(jω)∣=21⋅41ω2+1 ω2+1 ∠Φe(jω)=−arctanω+arctan21ω ∠Φe(jω)=arctanω−arctan21ω 在输入信号r 1 (t)=sin(t+30°)r_1(t)=\sin(t+30°)r1(t)=sin(t+30°)作用下 {∣Φe1 ( j ω ) ∣∣ω=1 =10 5∠Φe 1 (jω)∣ω = 1 =−18.435° ∠Φe1 ( j ω )∣ω=1 = 18.435 °\left\{\begin{array}{l} |\varPhi_{e_1}(j\omega)| \Big| _{\omega=1} =\cfrac{\sqrt{10}}{5} \\ \xcancel{\angle\varPhi_{e_1}(j\omega) \Big| _{\omega=1} =-18.435°} \\ \angle\varPhi_{e_1}(j\omega) \Big| _{\omega=1} =18.435° \end{array}\right.⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧∣Φe1(jω)∣∣∣∣ω=1=510 ∠Φe1(jω)∣∣∣ω=1=−18.435° ∠Φe1(jω)∣∣∣ω=1=18.435° 在输入信号r 2 (t)=2cos(2t−45°)r_2(t)=2\cos(2t-45°)r2(t)=2cos(2t−45°)作用下 {∣Φe2 ( j ω ) ∣∣ω=2 =10 4∠Φe 2 (jω)∣ω = 2 =−18.435° ∠Φe2 ( j ω )∣ω=2 = 18.435 °\left\{\begin{array}{l} |\varPhi_{e_2}(j\omega)| \Big| _{\omega=2} =\cfrac{\sqrt{10}}{4} \\ \xcancel{\angle\varPhi_{e_2}(j\omega) \Big| _{\omega=2} =-18.435°} \\ \angle\varPhi_{e_2}(j\omega) \Big| _{\omega=2} =18.435° \end{array}\right.⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧∣Φe2(jω)∣∣∣∣ω=2=410 ∠Φe2(jω)∣∣∣ω=2=−18.435° ∠Φe2(jω)∣∣∣ω=2=18.435° 系统的稳态误差为 es s (∞)=∣Φe 1 (j1)∣sin(t+30°+∠Φe 1 (j1))−2∣Φe 2 (j2)∣cos(2t−45°+∠Φe 2 (j2)) =10 5sin(t+11.565°)−10 4cos(2t−63.435°)\xcancel{ \begin{aligned} e_{ss}(\infin) &= |\varPhi_{e1}(j1)|\sin (t+30°+\angle\varPhi_{e1}(j1))-2|\varPhi_{e2}(j2)|\cos(2t-45°+\angle\varPhi_{e2}(j2)) \\ &=\cfrac{\sqrt{10}}{5}\sin(t+11.565°)-\cfrac{\sqrt{10}}{4}\cos(2t-63.435°) \end{aligned} }ess(∞)=∣Φe1(j1)∣sin(t+30°+∠Φe1(j1))−2∣Φe2(j2)∣cos(2t−45°+∠Φe2(j2))=510 sin(t+11.565°)−410 cos(2t−63.435°)ess( ∞ )= ∣Φe1( j 1 ) ∣ sin ( t + 30 ° + ∠Φe1( j 1 ) ) − 2 ∣Φe2( j 2 ) ∣ cos ( 2 t − 45 ° + ∠Φe2( j 2 ) )= 10 5sin ( t + 48.435 ° ) − 10 2cos ( 2 t − 26.565 ° ) \begin{aligned} e_{ss}(\infin) &= |\varPhi_{e1}(j1)|\sin (t+30°+\angle\varPhi_{e1}(j1))-2|\varPhi_{e2}(j2)|\cos(2t-45°+\angle\varPhi_{e2}(j2)) \\ &=\cfrac{\sqrt{10}}{5}\sin(t+48.435°)-\cfrac{\sqrt{10}}{2}\cos(2t-26.565°) \end{aligned}ess(∞)=∣Φe1(j1)∣sin(t+30°+∠Φe1(j1))−2∣Φe2(j2)∣cos(2t−45°+∠Φe2(j2))=510sin(t+48.435°)−210cos(2t−26.565°)
4.负反馈系统根轨迹如左图,反馈通道零极点分布图如右图,当反馈通道增益 KH=5\sout{K_H=5}KH=5时,系统存在重根,求有重根时系统的闭环传递函数。 已知闭环系统的根轨迹和反馈通道零极点分布如下图所示,试求当反馈通道根轨迹增益K H =5K_H=5KH=5时,并且闭环系统存在重极点的闭环传递函数。(图中 − 5.256 -5.256−5.256改为 − 5.68 -5.68−5.68) 由图可知,系统的根轨迹为180°180°180°根轨迹,系统的根轨迹方程为K ∗s+3s(s+5)(s+6)(s2+2s+2)= − 1 K^*\cfrac{s+3}{s(s+5)(s+6)(s^2+2s+2)}=-1K∗s(s+5)(s+6)(s2+2s+2)s+3=−1 系统的反馈通道传递函数为 H ( s ) = KH(s+3)s2+2s+2H(s)=\cfrac{K_H(s+3)}{s^2+2s+2}H(s)=s2+2s+2KH(s+3) 令K ∗ =K G K H K^*=K_GK_HK∗=KGKH,系统的闭环特征方程为 Δ ( s ) = s ( s + 5 ) ( s + 6 ) (s 2+ 2 s + 2 ) +K G K H( s + 3 ) = 0 \Delta(s)=s(s+5)(s+6)(s^2+2s+2)+K_GK_H(s+3)=0Δ(s)=s(s+5)(s+6)(s2+2s+2)+KGKH(s+3)=0 当K H =5K_H=5KH=5,根轨迹存在重根 −5.265\sout{-5.265}−5.265, 根轨迹存在重根−5.68-5.68−5.68,将其代入上式,解得 KG=1.696K G= 2.112 \sout{K_G=1.696} \\ K_G=2.112KG=1.696KG=2.112 系统的前向通道传递函数为 G(s)=1.696s ( s + 5 ) ( s + 6 ) G ( s ) =2.112s(s+5)(s+6)\sout{G(s)=\cfrac{\sout{1.696}}{\sout{s(s+5)(s+6)}}} \\ G(s)=\cfrac{2.112}{s(s+5)(s+6)}G(s)=s(s+5)(s+6)1.696G(s)=s(s+5)(s+6)2.112 系统的闭环传递函数为 Φ ( s )= G(s)1+G(s)H(s) = 1.696 (s2 + 2 s + 2 ) s ( s + 5 ) ( s + 6 ) (s2 + 2 s + 2 ) + 8.48 ( s + 3 ) = 2.112(s2+2s+2)s(s+5)(s+6)(s2+2s+2)+10.56(s+3)\begin{aligned} \varPhi(s) &= \cfrac{G(s)}{1+G(s)H(s)} \\ &\sout{= \cfrac{\sout{1.696(s^2+2s+2)}}{\sout{s(s+5)(s+6)(s^2+2s+2)+8.48(s+3)}}} \\ &= \cfrac{2.112(s^2+2s+2)}{s(s+5)(s+6)(s^2+2s+2)+10.56(s+3)} \end{aligned}Φ(s)=1+G(s)H(s)G(s)=s(s+5)(s+6)(s2+2s+2)+8.48(s+3)1.696(s2+2s+2)=s(s+5)(s+6)(s2+2s+2)+10.56(s+3)2.112(s2+2s+2)
5.(2021.12.20改)单位负反馈系统 G(s)= 6 ( s + 1 )s2 ( s − 1 )\sout{G(s)=\cfrac{6(s+1)}{s^2(s-1)}}G(s)=s2(s−1)6(s+1),画出奈奎斯图,判断稳定性,右半平面有几个极点,画出对数频率特性曲线。 单位负反馈系统开环传递函数G(s)=6(s+1)s2(s−1)G(s)=\cfrac{6(s+1)}{s^2(s-1)}G(s)=s2(s−1)6(s+1) (1)画出开环系统的Nyquist图,判断闭环系统稳定性,若系统不稳定,求处右半平面闭环极点个数。 (2)画出开环系统的Bode图(幅频特性和相频特性)。
(1) 系统的传递函数 G ( s ) = − 6(s+1)s2(−s+1)G(s)=-\frac{6(s+1)}{s^2(-s+1)}G(s)=−s2(−s+1)6(s+1) 系统的频率特性 {Φ ( j ω ) =6 ( 1 −ω 2)ω 2( 1 +ω 2)+ j12ω ( 1 +ω 2)∠ Φ ( j ω ) = − 180 ° − 180 ° + arctan ω + arctan ω\left\{\begin{array}{l} \varPhi(j\omega)=\cfrac{6(1-\omega^2)}{\omega^2(1+\omega^2)}+j\cfrac{12}{\omega(1+\omega^2)} \\ \angle\varPhi(j\omega)=-180°-180°+\arctan \omega+\arctan\omega \end{array}\right.⎩⎨⎧Φ(jω)=ω2(1+ω2)6(1−ω2)+jω(1+ω2)12∠Φ(jω)=−180°−180°+arctanω+arctanω 则有{Φ(jω)∣ω →0 +=+∞∠Φ(jω)∣ω →0 +=−360° {Φ(jω)∣ω → + ∞ =0∠Φ(jω)∣ω → + ∞ =−180°\left\{\begin{array}{l} \varPhi(j\omega) \Big| _{\omega\rightarrow0^+} =+\infin \\ \angle\varPhi(j\omega) \Big| _{\omega\rightarrow0^+} =-360° \end{array}\right. \left\{\begin{array}{l} \varPhi(j\omega) \Big| _{\omega\rightarrow+\infin} =0 \\ \angle\varPhi(j\omega) \Big| _{\omega\rightarrow+\infin} =-180° \end{array}\right.⎩⎨⎧Φ(jω)∣∣∣ω→0+=+∞∠Φ(jω)∣∣∣ω→0+=−360°⎩⎨⎧Φ(jω)∣∣∣ω→+∞=0∠Φ(jω)∣∣∣ω→+∞=−180° 令1−ω 2 =01-\omega^2=01−ω2=0,奈奎斯曲线与虚轴交点为j6j6j6,系统完整的奈奎斯特图为 由系统的传递函数可知P=1P=1P=1,在(−1,j0)(-1,j0)(−1,j0)点左侧存在半次负穿越,则 Z = P − 2 (N +−N −) = 2 Z=P-2(N^+-N^-)=2Z=P−2(N+−N−)=2 系统在sss平面的右半平面存在222个极点,系统不稳定。 (2) 系统的截至频率为ωc = 6 r a d / s\xcancel{\omega_c=6rad/s}ωc=6rad/s ω c =6 rad/s\quad\omega_c=\sqrt6rad/sωc=6rad/s,相角裕度 γ = − 198.924 °\xcancel{\gamma=-198.924°}γ=−198.924° γ=−44.415°\quad\gamma=-44.415°γ=−44.415°,系统的对数频率特性曲线。
6.单位负反馈系统 G(s)=250s ( s + 25 )\sout{G(s)=\cfrac{250}{s(s+25)}}G(s)=s(s+25)250,设计校正装置,要求静态误差系数 K=100\sout{K=100}K=100, γ⩾45°\sout{\gamma\geqslant45°}γ⩾45°, ωc>65rad/s\sout{\omega_c>65rad/s}ωc>65rad/s,画出校正后渐近幅频特性曲线。 单位负反馈系统的开环传递函数为G 0 (s)= 250s(s+25)G_0(s)=\cfrac{250}{s(s+25)}G0(s)=s(s+25)250,要求系统静态速度误差系数为100,相角裕度γ⩾45°\gamma\geqslant45°γ⩾45°,截止频率ω c \omega_cωc不低于65rad/s65rad/s65rad/s,设计一个合适的串联校正装置,求校正环节传递函数,并画出校正后开环系统渐进幅频特性曲线。 将系统传递函数化为 G ( s ) =10s(0.04s+1)G(s)=\frac{10}{s(0.04s+1)}G(s)=s(0.04s+1)10 根据题目的要求,设校正装置增益为K c =10K_c=10Kc=10,则G 1( s ) =100s(0.04s+1)G_1(s)=\frac{100}{s(0.04s+1)}G1(s)=s(0.04s+1)100 截止频率为ωc1= 46.978 r a d / s \omega_{c1}=46.978rad/sωc1=46.978rad/s 相角裕度为γ 1= 180 ° − 90 ° − arctan 0.04ωc1= 28.02 ° \gamma_{1}=180°-90°-\arctan0.04\omega_{c1}=28.02°γ1=180°−90°−arctan0.04ωc1=28.02° 故可使用超前校正,设校正装置为G c( s ) = Kc(τs+1)ατs+1G_c(s)=\frac{K_c(\tau s+1)}{\alpha\tau s+1}Gc(s)=ατs+1Kc(τs+1) 取校正后系统的截至频率为ω c =68rad/s\omega_c=68rad/sωc=68rad/s,则系统的相角裕度为γ 2= 180 ° − 90 ° − arctan 0.04ωc2= 20.185 ° \gamma_2=180°-90°-\arctan0.04\omega_{c2}=20.185°γ2=180°−90°−arctan0.04ωc2=20.185° 由20lg∣G 1 (jω)∣=10lgα20\lg|G_1(j\omega)|=10\lg\alpha20lg∣G1(jω)∣=10lgα可得 α = 0.257 \alpha=0.257α=0.257 由ϕ m =arcsin1−α1+α\phi_m=\arcsin\cfrac{1-\alpha}{1+\alpha}ϕm=arcsin1+α1−α可得ϕ m= 36.234 ° \phi_m=36.234°ϕm=36.234° 校正后系统的相角裕度为 γ =γ 2+ϕ m= 20.185 ° + 36.123 ° = 56.308 ° \gamma=\gamma_2+\phi_m=20.185°+36.123°=56.308°γ=γ2+ϕm=20.185°+36.123°=56.308° 满足题目要求。由ω c = 1ατ\omega_c=\cfrac{1}{\sqrt{\alpha}\tau}ωc=ατ1可得 τ = 0.029 \tau=0.029τ=0.029 校正装置为G c( s ) = 10(0.029s+1)0.00745s+1G_c(s)=\frac{10(0.029s+1)}{0.00745s+1}Gc(s)=0.00745s+110(0.029s+1) 图略
7.对信号 p(t)=3cos2πt+1.5cos4πt+cos8πt\sout{p(t)=3\cos2\pi t+1.5\cos4\pi t+\cos8\pi t}p(t)=3cos2πt+1.5cos4πt+cos8πt采样,采样周期 T=0.1s\sout{T=0.1s}T=0.1s,是否满足采样定理,画出采样频谱,写出采样信号表达式。 设连续信号p(t)=3cos2πt+1.5cos4πt+cos8πtp(t)=3\cos2\pi t+1.5\cos4\pi t+\cos8\pi tp(t)=3cos2πt+1.5cos4πt+cos8πt,系统采样周期T=0.1sT=0.1sT=0.1s (1)分析系统是否满足香农采样定理。 (2)在该采样周期下,p(t)p(t)p(t)的采样信号为p ∗ (t)p^*(t)p∗(t)的频谱图。
(1)ω s= 2π T= 20 π , ωmax= 8 π \omega_s=\cfrac{2\pi}{T}=20\pi,\ \omega_{max}=8\piωs=T2π=20π, ωmax=8π 因为ω s >2ωm a x\omega_s>2\omega_{max}ωs>2ωmax,满足香农采样定理,采样信号能无失真还原。 (2) 采样信号表达式为p ∗( t )= p ( t ) ∑k=0∞ δ ( t − k T ) = ∑k=0∞ p ( k T ) δ ( t − k T ) = ∑k=0∞ [ 3 cos ( 2 π ⋅ 0.1 ⋅ k ) + 1.5 cos ( 4 π ⋅ 0.1 ⋅ k ) + cos ( 8 π ⋅ 0.1 ⋅ k ) ] δ ( t − k T ) = ∑k=0∞ [ 3 cos ( 0.2 π k ) + 1.5 cos ( 0.4 π k ) + cos ( 0.8 π k ) ] δ ( t − k T )\begin{aligned} p^*(t) &= p(t)\displaystyle\sum_{k=0}^{\infin}\delta(t-kT) \\ &= \displaystyle\sum_{k=0}^{\infin}p(kT)\delta(t-kT) \\ &= \displaystyle\sum_{k=0}^{\infin}[3\cos(2\pi\cdot0.1\cdot k)+1.5\cos(4\pi\cdot0.1\cdot k)+\cos(8\pi\cdot0.1\cdot k)]\delta(t-kT) \\ &= \displaystyle\sum_{k=0}^{\infin}[3\cos(0.2\pi k)+1.5\cos(0.4\pi k)+\cos(0.8\pi k)]\delta(t-kT) \end{aligned}p∗(t)=p(t)k=0∑∞δ(t−kT)=k=0∑∞p(kT)δ(t−kT)=k=0∑∞[3cos(2π⋅0.1⋅k)+1.5cos(4π⋅0.1⋅k)+cos(8π⋅0.1⋅k)]δ(t−kT)=k=0∑∞[3cos(0.2πk)+1.5cos(0.4πk)+cos(0.8πk)]δ(t−kT) 对上式进行傅里叶变换(cosωt→π[δ(ω−ω 0 )+δ(ω+ω 0 )]cos\omega t\rightarrow\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]cosωt→π[δ(ω−ω0)+δ(ω+ω0)])P ∗( j ω )=1 T∑k=−∞∞ P ( j ω − j kωs ) =π T∑k=−∞∞ { 3 [ δ ( ω −ω1 − kωs ) + δ ( ω +ω1 − kωs ) ] + 1.5 [ δ ( ω −ω2 − kωs ) + δ ( ω +ω2 − kωs ) ] + [ δ ( ω −ω3 − kωs ) + δ ( ω +ω3 − kωs ) ] } =π T∑k=−∞∞ { 3 [ δ ( ω − 2 π − 20 π k ) + δ ( ω + 2 π − 20 π k ) ] + 1.5 [ δ ( ω − 4 π − 20 π k ) + δ ( ω + 4 π − 20 π k ) ] + [ δ ( ω − 8 π − 20 π k ) + δ ( ω + 8 π − 20 π k ] }\begin{aligned} P^*(j\omega) &= \cfrac{1}{T}\displaystyle\sum_{k=-\infin}^{\infin}P(j\omega-jk\omega_s) \\ &= \cfrac{\pi}{T}\displaystyle\sum_{k=-\infin}^{\infin}\{ 3[\delta(\omega-\omega_1-k\omega_s)+\delta(\omega+\omega_1-k\omega_s)]+1.5[\delta(\omega-\omega_2-k\omega_s)+\delta(\omega+\omega_2-k\omega_s)]+[\delta(\omega-\omega_3-k\omega_s)+\delta(\omega+\omega_3-k\omega_s)]\} \\ &= \cfrac{\pi}{T}\displaystyle\sum_{k=-\infin}^{\infin}\{ 3[\delta(\omega-2\pi-20\pi k)+\delta(\omega+2\pi-20\pi k)]+1.5[\delta(\omega-4\pi-20\pi k)+\delta(\omega+4\pi-20\pi k)]+[\delta(\omega-8\pi-20\pi k)+\delta(\omega+8\pi-20\pi k]\} \end{aligned}P∗(jω)=T1k=−∞∑∞P(jω−jkωs)=Tπk=−∞∑∞{3[δ(ω−ω1−kωs)+δ(ω+ω1−kωs)]+1.5[δ(ω−ω2−kωs)+δ(ω+ω2−kωs)]+[δ(ω−ω3−kωs)+δ(ω+ω3−kωs)]}=Tπk=−∞∑∞{3[δ(ω−2π−20πk)+δ(ω+2π−20πk)]+1.5[δ(ω−4π−20πk)+δ(ω+4π−20πk)]+[δ(ω−8π−20πk)+δ(ω+8π−20πk]} 采样信号频谱为
8.r(t)=1(t)\sout{r(t)=1(t)}r(t)=1(t), c(0)=c˙(0)=0\sout{c(0)=\dot{c}(0)=0}c(0)=c˙(0)=0,画出系统误差相轨迹,系统是否稳定,稳定时是否有稳态误差,稳态误差是多少。 设c(0)=c ˙ (0)=0c(0)=\dot{c}(0)=0c(0)=c˙(0)=0,输入为单位阶跃信号,求 (1)e−e ˙ e-\dot{e}e−e˙平面的相轨迹图 (2)判断系统的稳定性,并求出最大稳态误差。 G ( s ) =30s(2s+1)G(s)=\frac{30}{s(2s+1)}G(s)=s(2s+1)30
(1) 非线性环节是死区继电特性 u ={ Mx⩾0.5 0∣x∣<0.5−Mx⩽−0.5u= \begin{cases} M & x\geqslant0.5 \\ 0 & |x|