导航菜单
首页 >  » 正文

数据分析师需要学习哪里内容 怎么入门数据分析师呢

数据分析师需要学习哪里内容?



1、数学知识
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。

对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。

而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。
所以数据分析并非一定要数学能力非常好才能学习,只要看你想往哪个方向发展,数据分析也有偏“文”的一面,特别是女孩子,可以往文档写作这一方向发展。
2、分析工具
对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。
对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。
对于数据挖掘工程师……嗯,会用用Excel就行了,主要工作要靠写代码来解决呢。
3、编程语言
对于初级数据分析师,会写SQL查询,有需要的话写写Hadoop和Hive查询,基本就OK了。
对于高级数据分析师,除了SQL以外,学习Python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。
对于数据挖掘工程师,Hadoop得熟悉,Python/Java/C 至少得熟悉一门,Shell得会用……总之编程语言绝对是数据挖掘工程师的最核心能力了。
4、业务理解
业务理解说是数据分析师所有工作的基础也不为过,数据的获取方案、指标的选取、乃至最终结论的洞察,都依赖于数据分析师对业务本身的理解。
对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。
对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。
对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。
业务能力是优秀数据分析师必备的,如果你之前对某一行业已经非常熟悉,再学习数据分析,是非常正确的做法。刚毕业没有行业经验也可以慢慢培养,无需担心。
4、逻辑思维
这项能力在我之前的文章中提的比较少,这次单独拿出来说一下。
对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。
对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。
对于数据挖掘工程师,逻辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。
5、数据可视化
数据可视化说起来很高大上,其实包括的范围很广,做个PPT里边放上数据图表也可以算是数据可视化,所以我认为这是一项普遍需要的能力。
对于初级数据分析师,能用Excel和PPT做出基本的图表和报告,能清楚的展示数据,就达到目标了。
对于高级数据分析师,需要探寻更好的数据可视化方法,使用更有效的数据可视化工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。
对于数据挖掘工程师,了解一些数据可视化工具是有必要的,也要根据需求做一些复杂的可视化图表,但通常不需要考虑太多美化的问题。
6、协调沟通
对于初级数据分析师,了解业务、寻找数据、讲解报告,都需要和不同部门的人打交道,因此沟通能力很重要。
对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。
对于数据挖掘工程师,和人沟通技术方面内容偏多,业务方面相对少一些,对沟通协调的要求也相对低一些。
7、快速学习
无论做数据分析的哪个方向,初级还是高级,都需要有快速学习的能力,学业务逻辑、学行业知识、学技术工具、学分析框架……数据分析领域中有学不完的内容,需要大家有一颗时刻不忘学习的心。
快速学习非常重要,只有快速进入这一行业,才能抢占先机,获得更多的经验和机会。如果你完全零基础想要尽快进入数据分析行业,选择一家专业的大数据培训机构是个不错的选择。缩短学习周期,提高学习效率,时间即金钱!

怎么入门数据分析师呢?

建议如果是零基础菜鸟级人物,多看书,经济条件允许的情况下去参加数据分析培训,我之前参加的是人大经济论坛开的CDA数据分析师培训,这个课程从零基础开始,让我这个曾经的菜鸟一步一步逐渐的开始在数据分析这行成长起来了。老师们都很不错,课后有视频提供,可以课下复习。

数据分析零基础学习吗?

1、数据分析要学多久?

每个人的学习能力和基础都不同,所以数据分析的学习周期也不同。而且也要结合自身的发展方向来选择学习的内容,因此学习时间会有很大的差别。一般来讲,零基础的学习者进行系统的培训,最快也要将近三个月。这里给大家推荐一下博学谷的《所有人都能学的数据分析课》 ,专注于培养数据分析师的数据处理能力、数据分析能力和数据挖掘能力,课程内容从数据库管理、统计理论方法、数据分析主流软件的应用到数据挖掘算法等,对一整套数据分析流程技术进行系统讲解,学完之后,学习者可以直接达到中级数据分析师的水平。

2、数据分析要学什么?

(1)统计学

统计学是数据分析的基础,是必须零基础初学者必须掌握的重要内容。学习最基本的统计学知识可以解决日常大部分的分析需求,所以强烈推荐零基础学习者先从统计学开始入手。统计学设计概率、分布、抽样、线性回归、时间序列、统计推断等内容。

(2)SQL

SQL是零基础学习数据分析的核心内容之一,当你要分析的数据超过百万级别的时候,这时候需要数据库来解决,而从数据库中获取数据要依靠SQL语言。可以把MySQL作为学习对象,简单了解一些数据库范式设计等基本的数据库原理,重点学习SQL语言。可以自己安装一个MySQL数据库实践操作练习。

(3)Excel

说起Excel可能会有人觉得这个很简单,但是Excel确实是一个功能强大的利器。作为数据分析师的核心工具,具体学习内容有Excel函数技巧(查找函数、统计函数、逻辑函数)、Excel快速处理技巧(格式调整、查找定位、快捷键技巧等)和Excel可视化技巧(组合图、条形图、数据气泡地图)。

(4)数据挖掘、机器学习

这部分可以选择性学习。因为统计分析基本可以解决日常数据分析工作的70%-80%的需求,而且数据挖掘和机器学习的难度较大,门槛略高。这部分主要是了解数据挖掘和机器学习的基本概念和理论。比如:分类、聚类、回归、决策树、贝叶斯定理等。

(5)Python

因为Python有很多的第三方强大的库,因此Python是数据分析的利器,也是数据分析必学的编程语言。比如Numpy、Pandas、Matplotlib与python作图、Sklearn与机器学习基础等等。虽然Python是数据分析的重要工具,但是不同的职业发展方向,Python掌握的程度也是不一样的。

(6)产品运营知识

可能有些人都听过产品运营这一岗位,对于想往管理路线发展的数据分析师来讲,产品运营是必须要要学习的知识。其实产品运营知识也不复杂,就是根据自身业务需求将指标拆解到最细,然后运用同比和环比两种数据分析方式。

我想转行做数据分析师,怎么入门


从excel开始,然后学习sql、统计学、spss,再学习几个基于excel、spss的数据分析项目。零基础转行,建议报个在线的课程学学,要少走很多弯路。听说大讲台不错,可以去看看。

数据分析师怎么入门?

1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。

2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。

3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分
析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法
有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。

4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。

数据分析没有基础,应该从哪方面开始学习?

关于数据分析的学习流程,建议可以先确定一下后续想要从事的行业,以翻牌君现在的了解来说,数据分析在不同行业的分析思路是完全不同的,比如电商、金融、互联网等等;

然后还有确定职业方向,一个是业务方向一个是技术方向;

业务方向更偏向业务,需要很清楚所在行业-公司的业务,这个可能更偏数据运营,需要一定时间的行业经验;

技术方向就更偏数学了,需要了解算法,后续可以做机器学习、数据开发等更偏开发的工作;

基础部分你需要学会:

- 逻辑和统计学知识

- 数据分析思路:业务知识的掌握

- 数据分析技能:描述性分析、相关性分析、回归分析、指标体系搭建、用户画像体系搭建

- 数据分析工具:Excel、SQL、BI工具(tableau、FineBI、QuickBI)、Python(进阶)

如果想成为一名数据分析师,需要具备哪些基本知识

一、 办公软件
1) 熟练使用excel, Access,Visio等MS Office办公软件,可以制作相关的原型; (MS即microsoft微软,MS Office 是微软提供的系列软件,Word, Excel, PowerPoint, Access, OutLook,Publisher,InfoPath这7个办公软件中,常用的是前4个。) 2) 重点掌握EXCEL表,会使用高级功能,能快速制作报表,熟练使用EXCEL VBA;

二、 数据分析软件及方法
1)熟练使用各种数理统计、数据分析、数据挖掘工具软件,熟悉各种网站分析软件的应用,如Google Analytics 、百度统计、Omniture等;
2)具备相关数据分析软件的使用经验SPSSSASEVIEWSTATARWeka……
3)至少精通使用IBM Intelligent Miner、SAS Enterprise Miner、SPSS Clementine、LEVEL5Quest、SGI、WinRosa、ExcelVBA、S-plus、Matlab、SSIS等等常见数据挖掘软件中的一个进行数据挖掘的 开发工作;
4)熟练使用至少一种网站流量分析工具(Google Analytics、Webtrends、百度统计等),并掌握分析工具的部署、配置优化和权限管理;
5)精通一种或多种数据挖掘算法(如聚类、回归、决策树等); 6)熟悉维基编辑者优先; 7)使用软件的要求;
(7.1)掌握数据分析、挖掘方法,具备使用Excel、SQL、SPSS/SAS、Powerpoint等工具处理和分析较大量级数据的能力;
(7.2)能够综合使用各种数理统计、数据分析、制表绘图等软件进行图表、图像以及文字处理;
(7.3)掌握常用的数据统计、分析方法,有敏锐的洞察力和数据感觉,优秀的数据分析能力;
(7.4)能够综合使用各种数理统计、数据分析、数据挖掘、制表绘图等软件进行具有基本数据美感的图表、图像以及文字处理 。
三、 数据库语言
1)熟悉Linux操作系统及至少一种脚本语言(Shell/Perl/Python);
2)熟练掌握C/C /Java中的一种,有分布式平台(如Hadoop)开发经验者优先; 3)熟悉数据库原理及SQL基本操作;
(3.1)了解Mysql,postgresql,sql server等数据库原理,熟悉SQL,具备很强的学习能力,写过程序,会perl,python等脚本语言者优先; (3.2)熟练应用mysql的select,update等sql语句; 4)熟悉sql server或其他主流数据库,熟悉olap原理; 5)熟悉Oracle或其他大型数据库。
四、 思维能力等方面
1)具备良好的行业分析、判断能力、及文字表达能力;
2)沟通、协调能力强,有较高的数据敏感性及分析报告写作能力; 3)理解网站运营的常识,能从问题中引申出解决方案,提供设计改进建议;
4)具有良好经济学、统计学及相关领域的理论基础,熟悉数理统计、数据分析或市场研究的工作方法,具有较强的数据分析能力;
5)熟悉数据分析与数理统计理论,具有相关课程研修经历。
五、 其他要求
1)较强的英文听说读写能力,英语6级以上;
2)文笔良好;
3)了解seo,sem优先;
4)知识要求:同时具备统计学、数据库、经济学三个领域的基础知识;英语四级或以上、熟悉指标英文名称;具备互联网产品设计知识;
5)具有深厚的数据分析、数据挖掘理论知识,深入了解相关技术;能熟练使用至少一种统计分析或数据挖掘工具。

相关推荐: