请问考研数二考什么?有哪些参考书?
考研数学二只考高等数学和线性代数,概率和数理统计不考。
数学二(高等数学,分值比例占78%)同济六版高等数学中除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考。所有近似的问题都不考;第四章不定积分不考积分表的使用。不考第八章空间解析几何与向量代数,除去第九章后面内容不考。
数学二(线性代数,分值比例占22%)同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。
考研数学参考书:复习初期:看课本,结合《李永乐考研数学复习全书(数二)》。复习中期:做历年真题,结合《李永乐400题》。
其他考研数学参考书:《金榜图书 李永乐·王式安唯一考研数学系列》《张宇考研数学系列丛书:张宇考研数学题源探析经》《张宇考研数学题源探析经典1000题》《李永乐·王式安唯一考研数》等。
扩展资料
考研数学中线性代数的复习
线性代数相对于大家更为熟悉的高数来说,其实是比较容易的,其计算技巧相对较少,而且常考的题型也相对固定。
该科目有5道题:2个选择、1个填空、2道解答题。从近十年考研数学真题来看,选择题和填空题多数e799bee5baa6e79fa5e98193e58685e5aeb931333366303766情况下是考查知识点综合性较小,经常考如行列式计算、矩阵初等变换、向量组线性相关(无关)、线性方程组的解等,难度较低。
而对两个解答题的考查,基本上都是多个知识点的综合,如矩阵的特征值和特征向量、矩阵对角化、二次型等知识点的综合运用,方法很常规,有时需要一定的技巧。只要同学们平时知识掌握得牢固,线性代数基本不会丢分。
参考资料来源:中国研究生招生信息网官网-网报公告
谁知道考研数学都考哪几本书?
考研数学有四个。除了数学一、数学二,此外还有数学三、数学四,区分的标准是根据你的方向不同而定。全部如下:数学一:包含线代,高数,概率。适用的学科为:1.工学门类的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科、专业.2.工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业.3.管理学门类中的管理科学与工程一级学科按此划分,绝大多数院校的计算机专业都会选择考数学一,这也是从事计算机所必须的最低数学功底。
考研数二都不考什么?
考研数学二考试科目:只考高数(78%)和线代(22%) ,也就是不考概率。
高数同济四版: (带星号不考)
上册:打星号的不考,第二章第八节不考,第三章第十节不考,第五章第六节不考,第七章不考,其他都考 。
下册:打星号的不考,第八章第六、七节不考,第九章第三、四、五节不考,第十章,第十一章不考,第十二章5,6,11,12,13节不考。
总的来说,上册考的多下册只考三章,而且不是全考,但微分方程比较繁 。
线代:
1-5章全考,第六章不考。
1.曲面和曲线积分不考。
2.空间解析几何不考。
3.级数不考。
3.三重积分不考。
考研数学都考哪几本书?
数学分为数一、数二、数三。而求各个要求是不一样的,数一是最多最难的,几乎三本都要考;数二不考概率论;数三也是全部都靠,但是相对简单。各个要求要看每年的数学大纲,这个要等到9月份才出的,不过和往年是没有太大的区别的
考研数学二是哪本书
数学二只是其中公共课的一种数学考试类型,包含高数和线性代数两个部分。参考书推荐汤家凤的复习全书,思维清晰,解题套路实用。
问:考研数学都考哪几本书啊?高数两本?线性代数一本?就这三本书?前辈们给解答下吧,谢啦
考研数学三具体考什么内容
微积分
一、函数、极限、连续
考试内容
函数的概念及表示法 函数的有界性.单调性.周期性和奇偶性 复合函数.反函数.分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性.单调性.周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.了解数列极限和函数极限(包括左极限与右极限)的概念.
6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.
7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.
8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性.最大值和最小值定理.介值定理),并会应用这些性质.
二、一元函数微分学
考试内
导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数.反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(LHospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性.拐点及渐近线 函数图形的描绘 函数的最大值与最小值
考试要求
1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.
2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.
5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.
6.会用洛必达法则求极限.
7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线.
9.会描述简单函数的图形.
三、一元函数积分学
考试内容
原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用
考试要求
1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.
2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.
3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.
4.了解反常积分的概念,会计算反常积分.
四、多元函数微积分学
考试内容
多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值.最大值和最小值 二重积分的概念.基本性质和计算 无界区域上简单的反常二重积分
考试要求
1.了解多元函数的概念,了解二元函数的几何意义.
2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.
3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.
4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.
5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.
五、无穷级数
考试内容
常数项级数收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与 级数及其收敛性 正项级数收敛性的判别法 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径.收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式
考试要求
1.了解级数的收敛与发散.收敛级数的和的概念.
2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.
3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.
4.会求幂级数的收敛半径、收敛区间及收敛域.
5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数
6.了解 . . . 及 的麦克劳林(Maclaurin)展开式.
六、常微分方程
考试内容
常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程的简单应用
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.
3.会解二阶常系数齐次线性微分方程.
4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.
5.了解差分与差分方程及其通解与特解等概念.
6.了解一阶常系数线性差分方程的求解方法.
7.会用微分方程求解简单的经济应用问题.
线性代数
一、 行列式
考试内容
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
二、矩阵
考试内容
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.
5.了解分块矩阵的概念,掌握分块矩阵的运算法则.
三、向量
考试内容
向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法
考试要求
1.了解向量的概念,掌握向量的加法和数乘运算法则.
2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
四、线性方程组
考试内容
线性方程组的克莱姆(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系 非齐次线性方程组的通解
考试要求
1.会用克莱姆法则解线性方程组.
2.掌握非齐次线性方程组有解和无解的判定方法.
3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.
五、矩阵的特征值和特征向量
考试内容
矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵
考试要求
1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.
2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量的性质.
六、二次型
考试内容
二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
考试要求
1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.
2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.
3.理解正定二次型.正定矩阵的概念,并掌握其判别法.
概率论与数理统计
一、 随机事件和概率
考试内容
随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验
考试要求
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.
二、随机变量及其分布
考试内容
随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布
考试要求
1.理解随机变量的概念,理解分布函数
的概念及性质,会计算与随机变量相联系的事件的概率.
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用.
3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为
5.会求随机变量函数的分布.
三、多维随机变量的分布
考试内容
多维随机变量及其分布函数 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布
考试要求
1.理解多维随机变量的分布函数的概念和基本性质.
2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.
3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.
4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义.
5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.
四、随机变量的数字特征
考试内容
随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差、相关系数及其性质
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.
2.会求随机变量函数的数学期望.
3.了解切比雪夫不等式.
五、大数定律和中心极限定理
考试内容
切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗—拉普拉斯(De Moivre-Laplace)定理 列维—林德伯格(Levy-Lindberg)定理
考试要求
1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).
2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.
六、数理统计的基本概念
考试内容
总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布
考试要求
1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为
2.了解产生 变量、 变量和 变量的典型模式;了解标准正态分布、 分布、 分布和 分布得上侧 分位数,会查相应的数值表.
3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.
4.了解经验分布函数的概念和性质.
七、参数估计
考试内容
点估计的概念 估计量与估计值 矩估计法 最大似然估计法
考试要求
1.了解参数的点估计、估计量与估计值的概念.
2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法
公共课比复习参考书 :
《考研真相》(王林真题书) 针对英语基础一般的同学编著,突出表现在词汇的系统注释和长难句的图示解析,超级实用。
《英语考试大纲解析》(教育司) 要精细的阅读其要求和样题,最后可以阅读范文
《写作160篇》是目前话题最全最广的写作书,这也是它连续四年命中作文题最主要的原因。
《考研英语词汇+词根+联想记忆》新东方俞敏洪
《阅读基础90篇》王建华 张磊
《政治考试大纲解析》(教育司)
《任汝芬政治高分复习指导书》 全
《启航20天20题》,这是在考前20天要做的。
《数学考试大纲解析》(教育司) 知识点很全,作为指导书
《陈文登数学习题精粹》 试题很精练,很灵活,有些难度,题型全考研数学一二三四分别指的是哪几本书??
现在已经没有数四了。以前考数四的现在都考数学三或者数学(农)了。不管考数几都需要1高等数学(一般是同济五版或六版)、线性代数(一般是浙大版)、概率论。(数二不需要概率论)他们的区别就是有的章节数二是不作要求的。现在就去书店买复习全书吧,那上面比较详细。。。。。
高分悬赏!~MBA具体考几科,考试专业课都有哪些,数学考哪几本
考试科目
综合能力:数学(75分)+逻辑(60分)+写作(65分)=200分;
英语:春季和秋季MBA英语考试大纲不同;
满分:300分。
数学主要是初等数学和几何,现在不考高等数学
请问考研高等数学三要考哪几本书?侧重哪本书?
2006年全国硕士研究生入学统一考试数学考试大纲》作了如下修订:
(1)基于工学、经济学、管理学门类各学科专业对硕士研究生入学所应具备的数学知识和能力的不同要求,数学统考试卷仍分为数学一、数学二、数学三和数学四。
(2)数学一、二试卷高等数学部分,“一元函数积分学”考试要求的第6条中增加了“质心”内容。
(3)数学三、四试卷微积分部分,“一元函数微分学”考试要求的第2条中增加了“会求分段函数的导数”的要求。
(4)数学三试卷微积分部分,“常微分方程与差分方程”的考试内容中增加了“线性微分方程解的性质及解的结构定理”内容。
(5)数学一、三试卷线性代数部分,“向量”考试要求第4条改为“4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系。”“二次型”考试要求的第3条改为“3.理解正定二次型、正定矩阵的概念,并掌握其判别法。”
(6)数学二试卷线性代数部分,“矩阵”考试要求的第1条增加“理解正交矩阵”,“向量”考试内容增加“向量的内积”、“线性无关向量组的正交规范化方法”,“向量”考试要求增加“5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法”。“矩阵的特征值和特征向量”考试要求的第2、第3条中“了解”改成“理解”。
(7)数学一试卷概率论部分,“三、二维随机变量及其分布”改为“三、多维随机变量及其分布”,其考试内容中“二维随机变量及其概率分布”改为“多维随机变量及其分布”;增加了“两个以上随机变量简单函数的分布”的内容;考试要求第4条增加了“会求多个相互独立随机变量简单函数的分布”的要求。
(8)数学一试卷数理统计部分,参数估计的考试要求中第4条“了解区间估计的概念”改为“理解分区估计的概念”;假设检验的考试要求中第2条“了解单个及两个正态总体的均值和为差的假设检验”改为“掌握单个及两个正态总体的均值和方差的假设检验”。
(9)对数学一、二、三、四试卷中的考试内容和考试要求的表述更进一步明确、规范和统一在考试内容部分只列出内容范围,而将有关内容的要求层次和应用这些内容可以解出的问题在考试要求部分列出。
植物学考研哪所学校比较好?都考哪几本书?
一、专业介绍
植物学是研究植物的分类、形态、生理、发生、遗传和进化的一门古老学科。主要分为5个研究方向:植物分类学、植物形态学、植物遗传学、植物生理学和植物生态学。植物学在科研和应用上具有重大意义。在科研上,它属于基础学科;在应用中,它可以为环境保护、农业生产和药用植物的开发做出重大贡献。
二、就业前景
植物学专业的毕业生根据其研究方向的不同,就业状况会有所差异。总体上来说,从事教学和科研的居多。
但也不一定非得从事植物学研究工作,植物学知识同样可以用于其他科研领域。比如一些园林单位、制药公司、种子公司和政府部门都会招聘该专业人才。
三、院校推荐
中山大学、浙江大学、北京林业大学、南京农业大学、西北农林科技大学、华中师范大学、南京林业大学、扬州大学、华南热带农业大学
四、专家建议
相比细胞生物学等兴起不久的学科,国内植物学研究水平较高的高校比较多。以中山大学为例,植物学专业是国家重点学科,在国内科研水平处于领先地位。该学科点是有害生物控制与资源利用国家重点实验室和基因工程教育部重点实验室的重要组成部分。
关于考研相关信息,你可以上考研教育网看看。