导航菜单
首页 >  » 正文

离散数学在那些专业中有应用,具体是什么? 什么是连续数学和离散数学?两者什么区别?求说简单点,深奥听不懂。

离散数学在那些专业中有应用,具体是什么?

离散数学简介 离散数学是现代数学的一个重要分支,也是计算机科学与技术的理论基础。离散数学是计算机专业课程的基础,是数据结构、编译原理、程序设计语言、数据库原理、操作系统、人工智能、算法分析与设计等课程必不可少的前行课程。通过对离散数学的学习,不仅使学生掌握进一步学习其他课程所必需的离散量的结构及其相互关系的数学知识,同时还培养了学生的抽象思维能力和严密的逻辑推理能力,另外还增强了学生使用学过的离散数学知识进行分析和解决问题的能力。 离散数学包括数理逻辑、集合论、代数结构、图论、形式语言、自动机和计算几何等。本课程主要介绍其中的数理逻辑和集合论部分。 数理逻辑是研究推理逻辑规则的一个数学分支,它采用数学符号化的方法,给出推理规则来建立推理体系。进而讨论推理体系的一致性、可靠性和完备(全)性等。数理逻辑的研究内容是两个演算加四论,具体为命题演算、谓词演算、集合论、模型论、递归论和证明论。数理逻辑是形式逻辑与数学相结合的产物。但数理逻辑研究的是各学科(包括数学)共同遵从的一般性的逻辑规律,而各门学科只研究自身的具体规律。 集合论可看作数理逻辑的一个分支,也是现代数学的一个独立分支,它是各个数学分支的共同语言和基础。集合论是关于无穷集和超穷集的数学理论。古代数学家就已接触到无穷概念,但对无穷的本质缺乏认识。为微积分寻求严密的基础促使实数集结构的研究,早期的工作都与数集或函数集相关联。集合论已在计算机科学、人工智能学科、逻辑学、经济学、语言学和心理学等方面起着重要的应用。

什么是连续数学和离散数学?两者什么区别?求说简单点,深奥听不懂。

连续(Continuity)的概念最早出现于数学分析,后被推广到点集拓扑中。
假设f:X->Y是一个拓扑空间之间的映射,如果f满足下面条件,就称f是连续的:对任何Y上的开集U, U在f下的原像f^(-1)(U)必是X上的开集。
若只考虑实变函数,那么要是对于一定区间上的任意一点,函数本身有定义,且其左极限与右极限均存在且相等,则称函数在这一区间上是连续的。
分为左连续和右连续。在区间每一点都连续的函数,叫做函数在该区间的连续函数。
离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。离散的含义是指不同的连接在一起的元素,主要是研究基于离散量的结构和相互间的关系,其对象一般是有限个或可数个元素。离散数学在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。
二者的区别:
离散数学是相对连续数学而言的,主要以研究对象是否具有连续性为区分点。从这个角度来说,通常的微积分就算是连续数学。但离散数学这个词和高等数学一样,现在更多的是用来指代大学非数学专业的一门数学课程名称,它的内容主要涉及数论、图论、最优化、群论等问题,通常是计算机类专业的必修课程。
连续数学是相对非随机数学而言的,主要以研究对象是否具有随机性为区分点。随机性是不确定性的一种,所以还有个更广的分类叫确定性数学与不确定性数学,后者还包括一种称为模糊性的不确定性。涉及随机性的都可以归到随机数学一类,比如概率论、随机过程、随机微分方程等,其它如微积分、线性代数之类就都算是非随机数学了。

离散数学是什么时候学的?

离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科。

离散数学课程主要介绍离散数学的各个分支的基本概念、基本理论和基本方法。这些概念、理论以及方法大量地应用在数字电路、编译原理、数据结构、操作系统、数据库系统、算法的分析与设计、人工智能、计算机网络等专业课程中;同时,该课程所提供的训练十分有益于学生概括抽象能力、逻辑思维能力、归纳构造能力的提高,十分有益于学生严谨、完整、规范的科学态度的培养。

问一下大学数学学习的课程顺序

大学数学主要包括微积分(高等数学)、线性代数、概率论和数理统计、复变函数、离散数学等课程。对于大多数工科来说,仅需学习前四门即可,不用学习离散数学。对于计算科学或数学系的学生来说,所有课程均需学习。而对于一般理科类或者经济类的学生,需要学习前三门课程。而对于文科类的学生,只需要学习微积分中比较浅层的知识。
  一般的课程学习顺序为:首先学习微积分,然后是线性代数,两者之间没有太大的联系,可以同步学习,不过就学科的起源来说,微积分的起源要早于线性代数。之后是概率论和复变函数,它们要建立在前两门的基础上来学习。离散数学虽然对其他数学学科的依赖较少,但是一般在较高年级才学。

数学与应用数学专业的主要课程有哪些?

我是吉大数学专业的一名同学,学数学学到头秃的那种,接下来给大家介绍一下数学与应用数学的课程。
主干课程有数学分析、高等代数、空间解析几何、实变函数、复变函数、常微分方程、数学物理方程、泛函分析、微分几何、拓扑学、抽象代数。
数学分析、高等代数、空间解析几何这三门课程是在大一上的,是最基础的三门课程,是其他课程的根基,直接点说,就是这三门学不明白,接下来的其他课程将更加学不懂。其中数学分析内容较多,也较为重要,初学可能较为困难,多用些功夫,就会渐入佳境了。下图即为我们院所用的数学分析的教材,也是我们学院老师编著的。

大二会学复变函数、常微分方程和抽象代数,复变函数和数学分析的好多知识都是相关联的,如果大一基础打的好,这个时候学复变函数就会事半功倍。常微分方程是一门很重要的课,应用十分广泛,同时,也需要数学分析中会学到的微积分的知识和高等代数中矩阵的相关知识。由此可见,学好数学分析和高等代数多么重要。

同时,大一、大二还有C语言和物理这两门课,它们对今后数学的学习影响不大,但是C语言也很重要,它差不多是多数大学生都要学的一个基础课程。

因为我现在是大二下学期,所以对后面的课程还不是特别了解,就不一一为大家介绍了。
最后,我想说,数学各个课程之间关联非常强,大家想学好数学,基础一定要打牢。

离散数学求助,R·S是怎么算的,求告知

二元关系R与S的复合(也叫作合成)
例如:
R={<1,2>,<2,3>,<1,4>,<3,1>}
S={<2,3>,<3,4>,<1,2>,<4,1>}
R。S={<1,3>,<2,4>,<1,1>,<3,2>}
S。R={<2,1>,<1,3>,<4,2>,<4,4>}

离散数学是传统的逻辑学
集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。离散数学的应用遍及现代科学技术的诸多领域。

(p∧q)∨r的主析取范式。离散数学

先补项,然后使用分配率:
(p∧q)∨r
⇔(p∧q∧(¬r∨r))∨((¬p∨p)∧(¬q∨q)∧r) 补项。
⇔((p∧q∧¬r)∨(p∧q∧r))∨((¬p∨p)∧(¬q∨q)∧r) 分配律。
⇔(p∧q∧¬r)∨(p∧q∧r)∨((¬p∨p)∧(¬q∨q)∧r) 结合律。
⇔(p∧q∧¬r)∨(p∧q∧r)∨((¬p∧(¬q∨q)∧r)∨(p∧(¬q∨q)∧r)) 分配律。
⇔(p∧q∧¬r)∨(p∧q∧r)∨(¬p∧(¬q∨q)∧r)∨(p∧(¬q∨q)∧r) 结合律。
⇔(p∧q∧¬r)∨(p∧q∧r)∨((¬p∧¬q∧r)∨(¬p∧q∧r))∨(p∧(¬q∨q)∧r) 分配律。
⇔(p∧q∧¬r)∨(p∧q∧r)∨(¬p∧¬q∧r)∨(¬p∧q∧r)∨(p∧(¬q∨q)∧r) 结合。
⇔(p∧q∧¬r)∨(p∧q∧r)∨(¬p∧¬q∧r)∨(¬p∧q∧r)∨((p∧¬q∧r)∨(p∧q∧r)) 分配律。
⇔(p∧q∧¬r)∨(p∧q∧r)∨(¬p∧¬q∧r)∨(¬p∧q∧r)∨(p∧¬q∧r)∨(p∧q∧r) 结合律。
⇔(p∧q∧¬r)∨(¬p∧¬q∧r)∨(¬p∧q∧r)∨(p∧¬q∧r)∨(p∧q∧r) 等幂律。
得到主析取范式。

扩展资料:
析取范式与合取范式
定义2.2 命题变项及其否定统称作文字。 仅由有限个文字构成的析取式称为简单析取式。
仅由有限个文字构成的合取式称为简单合取式。
例如,文字:p,┐q,r,q.
简单析取式: p,q,p∨q,p∨┐p∨r,┐p∨q∨┐r.
简单合取式: p,┐r,┐p∧r,┐p∧q∧r,p∧q∧┐r.
定理2.1:
(1)一个简单析取式是重言式当且仅当它同时含某个命题变项及它的否定。
(2)一个简单合取式是矛盾式当且仅当它同时含某个命题变项及它的否定。
定义2.3:
(1)由有限个简单合取式构成的析取式称为析取范式。
(2)由有限个简单析取式构成的合取式称为合取范式。
(3)析取范式与合取范式统称为范式。
例如,析取范式:(p┐∧q)∨r, ┐p∨q∨r, p∨┐q∨r.
合取范式:(p∨q∨r)∧(┐q∨r), ┐p∧q∧r, p∧┐q∧r.
定理2.2:
(1)一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛盾式。
参考资料来源:搜狗百科-主析取范式

离散数学中的图论有什么实际意义

图论可以用来分析事物之间的联系,可以说有最一般的意义,因为它是基于集合论的。比如社交网络、交通网络、分子结构,生物进化网络,商业网络,程序调用网络等等,任何你能想到的涉及事物间联系的系统都可以用图建模。