高中数学常用的特殊值
这是一些特殊的函数至,你看看吧,熟了就都记住了
(1)特殊角三角函数值
sin0=0
sin30=0.5
sin45=0.7071 二分之根号2
sin60=0.8660 二分之根号3
sin90=1
cos0=1
cos30=0.866025404 二分之根号3
cos45=0.707106781 二分之根号2
cos60=0.5
cos90=0
tan0=0
tan30=0.577350269 三分之根号3
tan45=1
tan60=1.732050808 根号3
tan90=无
cot0=无
cot30=1.732050808 根号3
cot45=1
cot60=0.577350269 三分之根号3
cot90=0
(2)0°~90°的任意角的三角函数值,查三角函数表。(见下)
(3)锐角三角函数值的变化情况
(i)锐角三角函数值都是正值
(ii)当角度在0°~90°间变化时,
正弦值随着角度的增大(或减小)而增大(或减小)
余弦值随着角度的增大(或减小)而减小(或增大)
正切值随着角度的增大(或减小)而增大(或减小)
余切值随着角度的增大(或减小)而减小(或增大)
(iii)当角度在0°≤α≤90°间变化时,
0≤sinα≤1, 1≥cosα≥0,
当角度在0°<α<90°间变化时,
tanα>0, cotα>0.
“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。
附:三角函数值表
sin0=0,
sin15=(√6-√2)/4 ,
sin30=1/2,
sin45=√2/2,
sin60=√3/2,
sin75=(√6+√2)/2 ,
sin90=1,
sin105=√2/2*(√3/2+1/2)
sin120=√3/2
sin135=√2/2
sin150=1/2
sin165=(√6-√2)/4
sin180=0
sin270=-1
sin360=0
对了,看完了你在看看这里的
高等数学需要的高中知识有哪些?详细的
我们数学是同济第六版的,应该是一样的吧。
第一章,函数与极限。主要还是以前学的东西,集合,映射,函数的奇偶性质和高中的差不多,然后新加的就是无穷小与无穷大。无穷小的比较。两个重要极限,函数的连续性等。
第二章,导数与微分。这一章中导数的概念,求导法则是高中学过的,然后新加的是高阶导数以及隐函数的求导和函数的微分。
第三章,微分中值定理与导数的应用。学过的是函数的极大值与极小值,新加的是洛必达法,泰勒公式,曲率等
第四章:不定积分,这个高中应该学了不多就是一些基本的!新加的是一些方法等等
第五章:定积分,这个也和不定积分差不多差不多吧,新加的是微积分的基本公式,广义积分(反常积分)然后判断收敛性等
第六章,定积分的应用,这个就不细说了吧,是第五章的延伸
第七章,微分方程,基本上高中没学
第八章:向量,这个高中学的很多,大一下学期第一章就是这个,所以好好学习了
以后的章节涉及到高中知识的比较少了,当然以后还要学习概率论,不过那就不叫高数了啊!这个概率论开始是要涉及一点高中学习的,毕竟是大学不可能总是学高中的,有高中知识也只是个过渡罢了!加油,其实开始都不难的!
高中研究性学习论文怎么写啊??复制一篇给我抄~~
浅述对高中数学研究性学习的认识和实践 摘要:数学研究性学习是指以培养学生的数学创新精神和创造能力为目的的教学课程。由于教师教学观念和教学行为形成定式的约束,在实施数学研究性学习中还存在很多问题。笔者结合自己的教学经验,提出了“情境法”和“问题法”研究性教学方法,相信对高中数学有借鉴作用。 关键词:高中数学 研究性学习 情境法 问题法 2001年4月,教育部颁发了普通高中“研究性学习”实施指南的通知以来,研究性学习就成为基础教育领域出现频率较高的一个名词。那么究竟什么是研究性学习,几年来高中数学研究性学习的进展如何,存在哪些主要问题,针对这种现状广大一线教师应该如何结合日常教学活动做好研究性学习的教学呢?本文拟就这几个问题进行探讨。 一、研究性学习基本涵义 所谓数学研究性学习,是指主要以培养学生的数学创新精神和创造能力为目的的教学课程。它主要是给学生介绍数学科学研究的基本过程与方法,指导学生开展数学课题研究。它要求给学生提供探究的问题和探究的手段,让学生自主探究学习的过程,因而具有研究性;它从问题的提出、方案的设计与实施,到得出结论,均由学生来做,因而具有自主创新性;它一般要通过调查、实验、小课题研究、专题讨论、社会实践等方式进行学习,因而具有开放性和实践性。 二、 研究性学习中存在问题 长期以来,相当一部分教师的教学观念和教学行为形成定式,在教学内容和教学条件变化不大的情况下,要实现教学行为方式的重大转变从而指导学生改变学习方式,需要一个较长的适应过程。事实上,目前高中数学教学中进行的研究性学习只浮于表面,对于新教材中有关于研究性学习的课题,大多数教师并没有按照研究性学习的方式让学生亲历知识的发现、检验与论证的过程,而是采用了变相灌输的方式促使学生记住结论而已。其实,在高中数学教学中如何处理好基础知识的教学、基本技能的训练与培养探究能力、创新精神的关系,目前仍是有待解决的课题。也正是因为如此,现在将研究性学习作为数学学习的一种新类型,列入课程计划,使之成为有目标、有实施要求、实施渠道和评价标准才是十分必要的。而且通过进行研究性学习,高中数学新课程标准所强调的学生学习方式的转变,教师教学观念、教学行为的改变才能比较容易实现。不过,这并不是说只有在研究性学习活动中才进行研究性学习,也不意味着传统的高中数学学科课程的教学中不能进行研究性学习。学科课程的教学与研究性学习恰恰是相辅相成的。只要处理得当,原有的课程内容也能在一定程度上支持学生的研究性学习的展开。而且,在高中数学教学中,既打好基础,又培养学生的创造精神和实践能力,是可能的,也是必要的,更是我们应该追求的教学上的很高境界。 三、研究性学习方法 目前,二期课改已在我校高中阶段全面推开,这对所有教师都是一个新的考验。研究性学习的使用不仅符合课改的要求,而且也是针对当前高中数学教学过程中仍存在的教学方法单一、理论与实际脱节、课堂氛围沉闷等问题所提出的教学方法。以下是笔者在实践中总结出的适应于当前课改的两种研究性学习方法。 方法一:情境法 教师在教学中可以采用引趣、激疑、悬念、讨论等多种形式激发学生的求知欲,活跃课堂气氛,特别是在讲授新课时,可根据课题创设问题情境,使学生对所述问题感兴趣,并激发他们的创造性思维,从而解决问题。例如,在学完函数的奇偶性和单调性后,教师提出这样的问题:设a、b为常数,且a≠0,b≠0,研究函数f (x)=ax+b/x的奇偶性和单调性。本题并没有涉及更深的数学知识,而是学生熟知的两种函数——正比例函数f(x)=kx(k≠0)与反比例函数f(x)=k/x(k≠0)的和,这题的特点是学生利用近阶段所学的数学知识,通过探究、合作和教师的适当指导,都能很快得到解决,具有“短、平、快”的特点。 方法二:问题法 数学研究性学习的过程就是围绕着一个需要解决的数学问题而展开,经过学生直接参与研究,并最终实现问题解决而结束,学生学习数学的过程本身就是一个问题解决的过程。因此,使学生能够将学到的数学知识应用到解决实际问题中去,也是研究性学习的一个重要的方面。例如,学习了正弦定理和余弦定理后,教师向学生布置利用解三角形的知识进行建筑高度的测量研究。如测量嘉定法华塔高度的方案,先选定一点A,在A点测得塔顶的仰角。为30°,再向前取一点B,在D点测得塔顶的仰角旦为45°,用皮尺测得A、B两点间的距离为a,见下图。设BD=x,在Rt△ACD中,∵a =30°, 。在Rt△BCD中,∵日=45°,于是 ,解得 。∴嘉定法华塔高度 。一方面使学生学习的数学理论与实际相结合,另一方面,调动了学生的学习积极性,拓展了思维,使得教学活动更有效地进行。 C B A D 图1:问题法求解塔高 四、结束语 研究性学习作为教育改革的新事物还有很多值得重视与探讨的问题。在数学教学中,既打好基础,满足眼前利益,又要体现出研究性学习的性质和价值,培养创新精神和实践能力,实现可持续发展,是数学教学的理想状态,这种理想状态的实现,现在还存在诸多困难。但是笔者认为,传统的数学教学应注入研究性学习的时代活水是不容置疑的,广大的一线高中数学教师应该积极探索研究性学习教学方法,广泛交流经验,使我国的高中数学研究性学习教学更进一个台阶。 参考文献: 1. 范宝忠,高中数学新教材教学中开展研究性学习的思考[J]。兵团教育学院学报,2006年 第4期。 2. 陆开扬,高中数学教学中对学生研究性学习进行分层指导的探索[J]。教育导刊,2006年10月。 仅供参考,请自借鉴 希望对您有帮助
请问高中数学需要初中的哪些基础
1、全面复习,把书读薄
全面复习不是生记硬背所有的知识,相反,是要抓住问题的实质和各内容各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到。这就是全面复习的含义。
2、突出重点,精益求精
在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点。在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多。"猜题"的人,往往要在这方面下功夫。一般说来,也确能猜出几分来。但遇到综合题,这些题在主要内容中含有次要内容。这时,"猜题"便行不通了。我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带次,用重点内容担挈整个内容。主要内容理解透了,其它的内容和方法迎刃而解。即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容。
3、基本训练反复进行
高中数学基础知识的重要性
短期内肯定是题海战术最有成效,但死做题最多只能熟悉题型,若不能举一反三地从题目中总结出其相关的基础知识,自行建立知识框架,那么做多了也不会更有效果。对基础知识清晰明朗的掌握是鉴定是否学活、学通的标准。所以复习基础知识自然重要有用,但它不是用来给人当条目死记硬背的,是要在实践中自己重新总结的。
学高中数学需要天赋不?
学任何东西都是要天赋的,就是两个人天生的差别。学数学也一样,不管是小学初中还是高中。
那么就你的问题,学高中数学需要天赋不。。显然是需要的。但我感觉你不想只得到这个答案。
天赋不是简单的对一道题的理解能力。首先,一点拨就会得比苦苦上不了道的人好,有两种可能。一种是前者更有天赋,还有一种是前者以开发出来的天赋比后者以开发出来的多。举个简单的例子,如果一个高中生对高中数学一点拨就会,而小学生却上不了道,显然不能说前者更有天赋。
另外,天赋的开发很重要,有些关键因素,比如兴趣啊,老师啊等等等等。你对数学有兴趣就比那些没兴趣的人更能学得好(我指的是长远的);老师指导的对,那你也能更快地发现解数学题的奥秘。
最后有一点,高中数学也不需要数学天赋特别好的人,中等就行,理解能力一般就行。因为勤能补拙,多做各种类型的题目,上课认真听,听老师解题的思路(一道题从哪里入手,什么方法等),下课认真完成作业,搞懂每道题。这样一定能成功。
还是祝你能挺过高中数学阶段,因为它还是比较难的。