考研数学第一轮复习应该用什么书
考研数学有网友推荐李老师的课程,这里有一份老师最新的考研数学资料分享给你;
链接:
李永乐王式安数学团队来自:百度网盘提取码: 12m9复制提取码跳转
提取码: 12m9
李永乐王式安数学团队,通过近阶段大家复习情况及出现的问题,为考生冲刺阶段复习提分指点迷津。冲刺阶段,目的总结所做题目中存在的问题与不足,对照考纲查缺补漏,提高实战素养,制定做题策略,规划草稿纸,特别是实战心理素质
若资源有问题欢迎追问!!
考研数学里高数书是每一章都考吗
高等数学
数一数二数三考试要求
第一章函数与极限
第十节中的“一致连续性”不用看;
其它内容是数一数二数三公共部分
第二章导数与微分
第四节参数方程求导及相关变化率为数一,数二考试内容,数三不要求;
第五节的微分在近似中的应用不用看;其余内容为数一数二数三公共部分.
第三章微分中值定理与导数的应用
第六节函数图形的描绘,第八节方程的近似解都不用看;
第七节曲率为数一数二考试内容,数三不用看;
其余内容为数一数二数三公共部分.
第四章 不定积分
第五节积分表的使用不看;
其余内容为公共部分.
第五章 定积分
第五节 反常积分的审敛法都不用看;
其余内容为数一数二数三公共部分.
第六章 定积分的应用
数三只需要掌握第二节的前两部分:平面图形的面积和体积;
数一数二掌握本章全部内容.
第七章 微分方程
第一,二,三,四(线性方程),六,七,八为数一数二数三公共部分;
第五节为数一数二考试内容;
第四节的伯努利方程和第九节欧拉方程为数一考试内容.
第八章 空间解析几何与向量代数
数二数三不考,数一考试内容.
第九章 多元函数微分法及其应用
第一,二,三,四,五,八节为数一数二数三公共部分;
第五节中的隐函数存在定理,第六、七节为数一考试内容;
第九、十节数一数二数三都不考.
第十章 重积分
二重积分,含参变量的积分为数一数二数三公共部分;
三重积分为数一考试内容,数二数三不考.
第十一章 曲线积分与曲面积分
本章为数一考试内容,数二数三不考
第十二章 无穷级数
本章内容数二不考;
前四节为数一数三公共部分;
第七、八节为数一考试内容;其余内容不用看.
线性代数
数一数二数三考试要求
前五章
数一数二数三公共部分
第六章
本章第二,三节为数一考试内容,数二数三不考.
概率论与数理统计
数二不考,数一数三考试要求
前三章
数一数三公共部分
第四章 随机变量的数字特征
前三节为数一数三公共部分;
第四节的协方差矩阵不用看.
第五章 大数定律及中心极限定理
数一数三公共部分,了解
第六章 样本及抽样分布
第二节不用看;
其余为数一数三公共部分.
第七章 参数估计
第一节为数一数三公共部分;
第二、六节不用看;
其余为数一考试内容
第八章 假设检验
前三节为数一考试内容,其余不用看,只需了解即可,考试很少考到.
这是14年数学大纲的要求,你要考的那一年数学大纲出来以后关注一下有没有变动,一般是不会有变的.
考研 数学一 复习需要哪些书?推荐几本实用资料
我大三,也要考研。
我之前在网上查过相关资料,个人认为你复习的话建议使用李永乐的复习全书,比较系统全面,也比较基础。然后再做李永乐的400题。
现在考研的人大部分都用的是李永乐的~前人也都向我们推荐,所以不会错的。
陈文灯的也不错,不过太注重做题技巧了好像。
考研数学一应该用什么书
过来人建议你一定要好好看看历年真题,这是最有用的,尤其是最近几年;大家都是这样摸着石头过河的。有的人真题刷了三遍。数学:一般用的是口袋题库的微积分、线性代数和概率论。这些教程是基础,看完做完这基本教材,还需要看复习全书,潘鑫是大家选择比较多的。上面的做完了,时间充足可以做一做易错题、难题,同时考研数学想取得高分,这块不能丢太多的分,不然很难拿高分。
考研数学用什么教材好
高等数学可以用同济大学的第五版或者第六版
概率论可以用浙江大学的第三版
线性代数推荐用同济大学的工程线性代数那本书非常经典
练习题可以李永乐的复习全书和660题,这是考数学的必备资料。
想找师兄师姐直接到人人网找人就可以了
想要考研资料可以在中国知网自己下载本科生的课程课件授课计划期中期末试卷等内容
想最终考研成功就从现在开始一直坚持把别人说到的自己做到就成功
想顺利找到一个更好的女朋友或者男朋友报考一个名校就可以
想成家立业修身立命一定要选择一个非常牛气的导师这样子肯定能够一鸣惊人
想知道更多的问题可以问百度。
考研数学还用看课本吗?光看复习资料行不行啊?
数学最重要的是:基本概念、基本方法、基本技巧。掌握住三基,120+绝对不是问题!看到偏题难题直接跳过,时间宝贵。看书益精忌浮,谁的书不特别重要,反复学习反复做(要动笔,忌眼高手低)。想要报班的可以选择启航考研的辅导班。
考研数学303是数学三,用微积分,线性代数,概率论与数据统计课本,启航张宇(全科)或文都汤家凤(全科)参考书。
考研数学用的教材一般是:高数:同济大学应用数学系主编的《高等数学》(上、下册)(绿色封皮),线性代数:同济大学应用数学系主编的《线性代数》(紫色封皮),概率论:浙江大学编的《概率论与数理统计》(蓝色封皮)。
考研数学需要看什么书
数学一的话要看高等数学,线性代数,概率论与数理统计
数学二的话要看高等数学,线性代数
数学三的话要看高等数学,线性代数,概率论与数理统计
数学一最难,数学二,数学三侧重点不同
考研数学考不考概率?
当然啦
数学一:包含线代,高数,概率。适用的学科为:
1.工学门类的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科、专业.
2.工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业.
3.管理学门类中的管理科学与工程一级学科
按此划分,绝大多数院校的计算机专业都会选择考数学一,这也是从事计算机所必须的最低数学功底。
数学二:包含线代,高数。适用的学科为:
1.工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等一级学科中所有的二级学科、专业.
2.工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较低的二级学科、专业.
数学三:常被称为经济数学,包含线代,概率,高数。适用学科为:
1.经济学门类的应用经济学一级学科中统计学、数量经济学二级学科、专业.
2.管理学门类的工商管理一级学科中企业管理、技术经济及管理二级学科、专业.
3.管理学门类的农林经济管理一级学科中对数学要求较高的二级学科、专业
数学四:包含线代,概率,高数,但是考核内容要不同于数学一,具体可参见大纲。适用学科为:
经济学门类中除上述规定的必考数学三的二级学科、专业外,其余的二级学科、专业可选用数学三或数学四;管理学门类的工商管理一级学科中除上述规定的必考数学三的二级学科、专业外,其余的二级学科专业可选用数学三或数学四.管理学门类的农林经济管理一级学科中对数学要求较低的二级学科、专业.
考研601数学是什么
这个考试科目代码,常在考研科目中出现。一般认为高数301为高教版高等数学一,是考研中最难的数学,包括高数、线代和数理统计高数302为高教版高数二,包含高数的部分和线代还有一个高数361吧,代表的是同济版的高等数学,难度和高教版差不多,侧重方向不同高等数学601强军计划的研究生。。。。602高等数学(高等数学一般是指微积分)是学校自命题,要与学校联系,看考试范围数学一:包含线代,高数,概率。适用的学科为:1.工学门类的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科、专业. 2.工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业. 3.管理学门类中的管理科学与工程一级学科按此划分,绝大多数院校的计算机专业都会选择考数学一,这也是从事计算机所必须的最低数学功底。数学二:包含线代,高数。适用的学科为:1.工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等一级学科中所有的二级学科、专业. 2.工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较低的二级学科、专业. 数学三:常被称为经济数学,包含线代,概率,高数。适用学科为:1.经济学门类的应用经济学一级学科中统计学、数量经济学二级学科、专业. 2.管理学门类的工商管理一级学科中企业管理、技术经济及管理二级学科、专业. 3.管理学门类的农林经济管理一级学科中对数学要求较高的二级学科、专业
考研数学,数三哪些不考
你问题提的有问题,因为数学知识太庞杂了,
你问不考哪些内容,我估计可以给你写上数十页的,难为人啊!
只能给你,数三考查的内容:
一是微积分:函数、极限、连续、一元函数微积分学、多元函数微积分学、无穷级数、常微分方程与差分方程
二是线性代数:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征 向量、二次型
三是概率论与数理统计:随机事件和概率、随机变量及其概率分布、随机变量的 联合概率分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参 数估计、假设检验