导航菜单
首页 >  » 正文

高斯赛德尔法、牛顿 拉夫逊法及PQ分解法进行潮流计算的优缺点 计算机408考研中的算法设计题可以用C++STL库吗

高斯赛德尔法、牛顿 拉夫逊法及PQ分解法进行潮流计算的优缺点

一:牛顿潮流算法的特点
1)其优点是收敛速度快,若初值较好,算法将具有平方收敛特性,一般迭代4~5 次便可以
收敛到非常精确的解,而且其迭代次数与所计算网络的规模基本无关。
2)牛顿法也具有良好的收敛可靠性,对于对高斯-塞德尔法呈病态的系统,牛顿法均能可靠
地敛。
3)初值对牛顿法的收敛性影响很大。解决的办法可以先用高斯-塞德尔法迭代1~2 次,以
此迭代结果作为牛顿法的初值。也可以先用直流法潮流求解一次求得一个较好的角度初值,
然后转入牛顿法迭代。
PQ法特点:
(1)用解两个阶数几乎减半的方程组(n-1 阶和n-m-1 阶)代替牛顿法的解一个(2n-m-2)阶方程
组,显著地减少了内存需求量及计算量。
(2)牛顿法每次迭代都要重新形成雅可比矩阵并进行三角分解,而P-Q 分解法的系数矩阵 B’
和B’’是常数阵,因此只需形成一次并进行三角分解组成因子表,在迭代过程可以反复应用,
显著缩短了每次迭代所需的时间。
(3)雅可比矩阵J 不对称,而B’和B’’都是对称阵,为此只要形成并贮存因子表的上三角或下
三角部分,减少了三角分解的计算量并节约了内存。由于上述原因,P-Q 分解法所需的内存
量约为牛顿法的60%,而每次迭代所需时间约为牛顿法的1/5。
二:因为牛顿法每次迭代都要重新生成雅克比矩阵,而PQ法的迭代矩阵是常数阵(第一次形成的)。参数一变,用PQ法已做的工作相当于白做了,相当于重新算,次数必然增多。
有点啰嗦了。。。。

计算机408考研中的算法设计题可以用C++STL库吗

C语言描述。
数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。
一般认为,一个数据结构是由数据元素依据某种逻辑联系组织起来的。对数据元素间逻辑关系的描述称为数据的逻辑结构;数据必须在计算机内存储,数据的存储结构是数据结构的实现形式,是其在计算机内的表示;此外讨论一个数据结构必须同时讨论在该类数据上执行的运算才有意义。一个逻辑数据结构可以有多种存储结构,且各种存储结构影响数据处理的效率。

奇异值分解的时间复杂度是多少

奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,是矩阵分析中正规矩阵酉对角化的推广。
  在矩阵M的奇异值分解中 M = UΣV*
  ·U的列(columns)组成一套对M的正交"输入"或"分析"的基向量。这些向量是MM*的特征向量。
  ·V的列(columns)组成一套对M的正交"输出"的基向量。这些向量是M*M的特征向量。
  ·Σ对角线上的元素是奇异值,可视为是在输入与输出间进行的标量的"膨胀控制"。这些是M*M及MM*的奇异值,并与U和V的行向量相对应。
  假设矩阵A为n*m,矩阵B为m*n ,则AxB,如下计算过程:
1、矩阵A中第一行的元素与矩阵B的第一列元素对应相乘,得
结果第一行的第一个元素要进行m次乘法运算,故总的需要m*n*m次乘法运算。
2、计算时间复杂度。
即大O,运行上限。故O(n^3)

相关推荐: