导航菜单
首页 >  » 正文

spss回归分析中,p值正好等于0.05,是否显著?

spss回归分析中,p值正好等于0.05,是否显著?

可能显著,可能不显著。显著性检验的基本原理是提出“无效假设”和检验“无效假设”成立的机率(P)水平的选择。所谓“无效假设”,就是当比较实验处理组与对照组的结果时,假设两组结果间差异不显著,即实验处理对结果没有影响或无效。
这个严谨的说,就直接对这个p=0.05进行一个讨论 可能是显著 也可能是不显著,因此可以在以后的研究中扩大样本量进一步求证。  但实际是你双击以下 那个0.05  肯定后面还有很多隐藏的位数。所以不可能是恰好等于0.05,一般都是大于0.05

扩展资料
如果P值小于某个事先确定的水平,理论上则拒绝零假设,反之,如果P值大于某个事先确定的水平,理论上则不拒绝零假设。常用的显著性水平是0.05,0.01和0.001[1]。
不同的水平各有优缺点。水平越小,判定显著性的证据就越充分,但是不拒绝错误零假设的风险,犯第二类错误的可能性就越大,统计效力就越低。
选择水平不可避免地要在第一类错误和第二类错误之间做出权衡。如果犯第一类错误造成的后果不严重,比如在试探性研究中,我们可以将α水平定得高一些,如0.05或0.1。
如果研究样本很小,为了提高统计效力,我们在某些研究中也不妨提高口水平。但是,如果犯第一类错误造成的后果很严重,比如我们要基于某项研究发现决定是否在全国推行某项教学改革,我们则需要将α水平定得低一些,如0.01或0.001。
参考资料:搜狗百科-显著性检验

相关推荐: