导航菜单
首页 >  » 正文

下列哪一模型是软件的基础模型( ) A.螺旋模型 B.瀑布模型 C.原型模型 D.第四代模型 自学数电和模电之前要先学什么,需要哪些基础?

下列哪一模型是软件的基础模型( ) A.螺旋模型 B.瀑布模型 C.原型模型 D.第四代模型

应该是瀑布模型吧,最早出现的软件开发模型是1970年W·Royce提出的瀑布模型。而且看传统的瀑布模型跟现在我们使用的系统开发步骤是一致的。

自学数电和模电之前要先学什么,需要哪些基础?

,你买的那两本书很好。学数电模电你必须先扎扎实实地把电路理论基础学好,数电对电路理论知识要求不高,模电就必须在学好电路的基础上去学习,不然无从学起。

高等代数。基础解系怎么求?要通用的方法。求AX=0的基础解系。

1、如何求基础解系:
设n为未知量个数,r为矩阵的秩。只要找到齐次线性方程组的n-r 个自由未知量,就可以获得它的基础解系。具体地说,我们先通过初等行变换把系数矩阵化为阶梯形,那么阶梯形的非零行数就是系数矩阵的秩。把每一个非零行最左端的未知量保留在方程组的左端,其余n-r 个未知量移到等式右端,再令右端 n-r个未知量其中的一个为1,其余为零,这样可以得到 n-r个解向量,这 n-r个解向量构成了方程组的基础解系。
2、AX=0的基础解系,例如:
(1)1 2 -3 -2
-2 3 5 4
-3 8 7 6
解: A-->
r2+2r1,r3+3r1,r2*(1/7)
1 2 -3 -2
0 7 -1 0
0 14 -2 0
r3-2r2
1 2 -3 -2
0 1 -1/7 0
0 0 0 0
r1-2r2
1 0 -19/7 -2
0 1 -1/7 0
0 0 0 0
基础解系为: a1=(19,1,7,0), a2=(2,0,0,1)
通解为: c1a1+c2a2, c1,c2为任意常数.