导航菜单
首页 >  » 正文

统计学考研学校排名 统计学考研只能考专硕吗

统计学考研学校排名

以下是国内最新统计学的排名你可以参考一下:
统计学
排名 校 名 等级 二级学科 一级学科 学科门
1 厦门大学 A++ 020208统计学 0202应用经济学 02经济学
2 中国人民大学 A++ 020208统计学 0202应用经济学 02经济学
3 上海财经大学 A+ 020208统计学 0202应用经济学 02经济学
4 杭州商学院 A 020208统计学 0202应用经济学 02经济学
5 天津财经学院 A 020208统计学 0202应用经济学 02经济学
6 中南财经政法大学 B+ 020208统计学 0202应用经济学 02经济学
7 北京大学 B+ 020208统计学 0202应用经济学 02经济学
8 复旦大学 B+ 020208统计学 0202应用经济学 02经济学
9 南开大学 B+ 020208统计学 0202应用经济学 02经济学
10 东北财经大学 B+ 020208统计学 0202应用经济学 02经济学
11 暨南大学 B 020208统计学 0202应用经济学 02经济学
12 中央财经大学 B 020208统计学 0202应用经济学 02经济学
西南财经大学 B 020208统计学 0202应用经济学 02经济学
辽宁大学 B 020208统计学 0202应用经济学 02经济学
其中人大和厦大的统计学是国家重点学科。

统计学考研只能考专硕吗

统计学考研不是只能考专硕,可以考学硕。例如,(10036)对外经济贸易大学/(014)统计学院/(020208)统计学,就是学硕学位。考试的初试科目为:(101)思想政治理论 (201)英语一 (303)数学三 (816)统计学综合。
  统计学是通过搜索、整理、分析、描述数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。其中用到了大量的数学及其它学科的专业知识,它的使用范围几乎覆盖了社会科学和自然科学的各个领域。

统计学考研027000与071400有什么区别?统计学专业与数量经济学专业的区别?

027000统计学是属于经济类,分在经济学院或者经济与贸易或者经济与管理的抄学院,专业除了政治英语还有数三和西方经济学(各个学校不一样知),而074100统计学是分在理学,一般都是数学学院,一般要考数学分析和高等代道数。

统计学考研方向

经济类考研一般考数学三,
不考数学的专业只有二类7个专业硕士:经济类联考综合能力适用于金融硕士、应用统计硕士、税务硕士、国际商务硕士等经济类专业硕士;
管理类联考综合能力适用于MBA、MPA、MPacc等管理类专业硕士。

心理统计学 考研

心理统计学是研究在心理实验或调查中如何收集、整理、分析数字资料,以及如何根据这些资料所传递的信息作出科学推论的应用统计学分支。它的目的是测量人的能力、知识、态度、性格特征等,并且发展相应的工具。
考试科目:普通心理学、发展和教育心理学、实验心理学、心理统计与测量,社会心理学。
从分值上看,普通心理学占100分,发展和教育心理学占70分,实验心理学占60分,心理统计与测量占了70分。
心理学考研312统考推荐书目
普通心理学(修订版).彭聃龄.北京师范大学出版社
普通心理学(第四版).叶奕乾.华东师范大学出版社
实验心理学纲要(修订版).张学民.北京师范大学出版社
发展心理学(第二版).林崇德.北京师范大学出版社
实验心理学.张学民.北京师范大学出版社
心理测量.金瑜.华东师范大学出版社
当代儿童发展心理学.桑标.上海教育出版社
实验心理学(第2版).朱滢.北京大学出版社
彭聃龄《普通心理学》(修订版)笔记和习题详解
实验心理学.郭秀艳.人民教育出版社
当代教育心理学.陈琦.北京师范大学出版社

心理学考研不考统计,测量,实验的学校

不考这些科目的学校基本上都是超烂的学校。告诉你一个,徐州师范大学不考,初试考发展心理学和心理学史,考到国家线就行,很容易考上

考研数学中,概率论与数理统计难不难,应该怎么复习?

2016考研数学概率统计部分出其不意,试题难度大,有2-3题计算复杂量大,这就很容易出错,因此新东方在线建议2017考生在复习时一定要抓计算能力,打好基础。具体复习方法如下,希望大家参考。
  一、注重基础,构建知识体系
  基本概念、基本方法、基本性质一直是考研数学的重点。概率统计的概念比较抽象,方法与性质也有相应的适用条件。有些同学在考场上,不知道试题要考查什么,该怎样下手,不知道该用哪个公式。我们建议考生在复习中一定要重视基础知识,要复习所有的定义、定理、公式,做足够多的基础题来帮助巩固基本知识。
  概率统计的知识点是三大科目里较少的,以考查计算能力为主,其中的推导与证明也是计算性的。考生特别要根据历年概率统计考试的两个大题内容,找出所涉及到的概念与方法之间的联系与区别。例如:事件独立性与不相容的关系,随机变量独立与事件独立的关系;分布函数与概率密度之间的联系与差别;区间估计与假设检验之间的联系。掌握他们之间的联系与区别,对大家处理其他低分值试题也是有助益的。
  二、参照大纲,提高综合能力
  大纲作为指导性文件,对命题、应试双方都是有约束力的。数学的复习要强化基础,随时参考适当的教科书,比如浙江大学版的《概率统计》(第四版)。有的考生认为复习到这个阶段就可以抛开课本搞题海战术了,这是舍本逐末。建议大家要边看书、边做题,通过做题来巩固概念、方法。同时,考生最好选择一本考研复习资料参照着学习,这样有利于知识能力的迁移,有助于在全面复习的基础上掌握重点。
  三、分类训练,培养应变能力
  近十年特别是近三年的研究生入学考试试题,加强了对考生分析问题和解决问题能力的考核。在概率统计的两个大题中,基本上都是多个知识点的综合。从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。建议在打好基础的同时,加强常见题型的训练(历年真题是很好的训练材料),边做边总结,以加深对概念、性质内涵的理解和应用方法的掌握,这样才能够做到举一反三,全面地应付试题的变化。
  此外,数学的学习不是看明白资料就行的,必须独立完成足够量的习题。此外,做完题后不要急不可耐地对答案,要养成勤于思考的习惯。拿到题时,应该整理出明确的思路,问问自己:命题人用这道题考什么,以前我在这个知识点上出错过吗?遇到一时无法独立解决的问题,应该有针对性地与学友讨论或者请教老师。

统计学中,统计数据来源渠道有哪些

一、数据的来源
从使用者的角度看,统计数据资料的来源主要有两种渠道:
一种是通过直接的调查或实验获得的原始数据,这是统计数据的直接来源,一般称为原始或第一手统计数据。
另一种是别人调查的数据,并将这些数据进行加工和汇总后公布的数据,通常称为次级数据或第二手间接的统计数据。一切间接的统计数据都是从原始的、第一手数据过渡而来的。
二、数据的直接来源——原始数据
搜集数据最基本的形式就是进行统计调查或进行实验活动,统计调查或进行实验就是统计数据的直接来源。
1、统计调查
统计调查是指根据统计研究预定的目的、要求和任务,运用科学的方法,有计划、有组织地向客观实际搜集资料的过程。通过统计调查得到的数据,一般称为观测数据。
2、实验法
实验法是直接获得统计数据的又一重要来源。通过实验法得到的数据就是实验数据。
三、数据的间接来源有:
1、公开出版的统计数据。
主要来自官方的统计部门和政府、组织、学校、科研机构。
2、尚未公开发表的统计数据。
如各企业的经营报表数据、专业调查咨询机构为公开发布的调查结果数据。
需注意的是,如果公开引用未公开发表的数据需要征得数据所有者的同意,同时要为自己发布的数据负责。

扩展资料:
1,要注意每种统计分析方法的适用范围。许多分析方法对数据的要求很高,如果样本的分布不符合要求,样本量数量不足,或者存在大量的伪样本,都会造成最后结果的偏差甚至是完全错误。
2,在选择一种分析方法的同时,要按照方法的要求整理数据库。错误的数据库格式对于研究有时是灾难性的。我们在使用任何研究模型之前,都要考虑数据的适用性。同样,数据的合理转换也很重要。
3,如果必要,可以使用不同的研究方法对同一问题进行解释,来互相验证结论的真伪。如果出现互相矛盾,一定要找到矛盾的原因,去伪存真。任何的分析模型和方法都有其使用的局限性,在一定场合会失效。
4,数据分析结果要使用通俗易懂的语言或图表进行描述,繁琐高深的公式和过程不应该经常成为最终研究报告的一部分。
5,数据分析需要耐心和细致,不能出现任何疏漏。哪怕是一点点的失误,都可能产生“蝴蝶效应”,让研究报告变的一钱不值。
6,统计分析方法高级不一定是最好的,简单有效能够解决问题才是最好的。
参考资料:搜狗百科-统计数据

统计学中的差异性与相关性联系

  统计学意义(p值) 结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。 如何判定结果具有真实的显著性 在最后结论中判断什么样的显著性水平具有统计学意义,不可避免地带有武断性。换句话说,认为结果无效而被拒绝接受的水平的选择具有武断性。实践中,最后的决定通常依赖于数据集比较和分析过程中结果是先验性还是仅仅为均数之间的两两>比较,依赖于总体数据集里结论一致的支持性证据的数量,依赖于以往该研究领域的惯例。通常,许多的科学领域中产生p值的结果≤0.05被认为是统计学意义的边界线,但是这显著性水平还包含了相当高的犯错可能性。结果0.05≥p>0.01被认为是具有统计学意义,而0.01≥p≥0.001被认为具有高度统计学意义。但要注意这种分类仅仅是研究基础上非正规的判断常规。 所有的检验统计都是正态分布的吗? 并不完全如此,但大多数检验都直接或间接与之有关,可以从正态分布中推导出来,如t检验、f检验或卡方检验。这些检验一般都要求:所分析变量在总体中呈正态分布,即满足所谓的正态假设。许多观察变量的确是呈正态分布的,这也是正态分布是现实世界的基本特征的原因。当人们用在正态分布基础上建立的检验分析非正态分布变量的数据时问题就产生了,(参阅非参数和方差分析的正态性检验)。这种条件下有两种方法:一是用替代的非参数检验(即无分布性检验),但这种方法不方便,因为从它所提供的结论形式看,这种方法统计效率低下、不灵活。另一种方法是:当确定样本量足够大的情况下,通常还是可以使用基于正态分布前提下的检验。后一种方法是基于一个相当重要的原则产生的,该原则对正态方程基础上的总体检验有极其重要的作用。即,随着样本量的增加,样本分布形状趋于正态,即使所研究的变量分布并不呈正态。 1统计软件的选择 在进行统计分析时,作者常使用非专门的数理统计软件Excel进行统计分析。由于Excel提供的统计分析功能十分有限,很难满足实际需要。目前,国际上已开发出的专门用于统计分析的商业软件很多,比较著名有SPSS(Statistical Package for Social Sciences)、SAS(Statistical Analysis System)、BMDP和STATISTICA等。其中,SPSS是专门为社会科学领域的研究者设计的(但是,此软件在自然科学领域也得到广泛应用);BMDP是专门为生物学和医学领域研究者编制的统计软件。目前,国际学术界有一条不成文的约定:凡是用SPSS和SAS软件进行统计分析所获得的结果,在国际学术交流中不必说明具体算法。由此可见,SPSS和SAS软件已被各领域研究者普遍认可。建议作者们在进行统计分析时尽量使用这2个专门的统计软件。 2均值的计算 在处理实验数据或采样数据时,经常会遇到对相同采样或相同实验条件下同一随机变量的多个不同取值进行统计处理的问题。此时,多数作者会不假思索地直接给出算术平均值和标准差。显然,这种做法是不严谨的。在数理统计学中,作为描述随机变量总体大小特征的统计量有算术平均值、几何平均值和中位数等。何时用算术平均值?何时用几何平均值?以及何时用中位数?这不能由研究者根据主观意愿随意确定,而要根据随机变量的分布特征确定。反映随机变量总体大小特征的统计量是数学期望,而在随机变量的分布服从正态分布时,其总体的数学期望就是其算术平均值。此时,可用样本的算术平均值描述随机变量的大小特征。如果所研究的随机变量不服从正态分布,则算术平均值不能准确反映该变量的大小特征。在这种情况下,可通过假设检验来判断随机变量是否服从对数正态分布。如果服从对数正态分布,则可用几何平均值描述该随机变量总体的大小。此时,就可以计算变量的几何平均值。如果随机变量既不服从正态分布也不服从对数正态分布,则按现有的数理统计学知识,尚无合适的统计量描述该变量的大小特征。退而求其次,此时可用中位数来描述变量的大小特征。 3 相关分析中相关系数的选择 在相关分析中,作者们常犯的错误是简单地计算Pearson积矩相关系数,而且既不给出正态分布检验结果,也往往不明确指出所计算的相关系数就是Pearson积矩相关系数。常用的相关系数除有Pearson积矩相关系数外,还有Spearman秩相关系数和Kendall秩相关系数等。其中,Pearson积矩相关系数可用于描述2个随机变量的线性相关程度(相应的相关分析方法称为“参数相关分析”,该方法的检验功效高,检验结果明确);Spearman或Kendall秩相关系数用来判断两个随机变量在二维和多维空间中是否具有某种共变趋势,而不考虑其变化的幅度(相应的相关分析称为“非参数相关分析”,该方法的检验功效较参数方法稍差,检验结果也不如参数方法明确)。各种成熟的统计软件如SPSS、SAS等均提供了这些相关系数的计算模块。在相关分析中,计算各种相关系数是有前提的。对于二元相关分析,如果2个随机变量服从二元正态分布,或2个随机变量经数据变换后服从二元正态分布,则可以用Pearson积矩相关系数描述这2个随机变量间的相关关系(此时描述的是线性相关关系),而不宜选用功效较低的Spearman或Kendall秩相关系数。如果样本数据或其变换值不服从正态分布,则计算Pearson积矩相关系数就毫无意义。退而求其次,此时只能计算Spearman或Kendall秩相关系数(尽管这样做会导致检验功效的降低)。因此,在报告相关分析结果时,还应提供正态分布检验结果,以证明计算所选择的相关系数是妥当的。需要指出的是,由于Spearman或Kendall秩相关系数是基于顺序变量(秩)设计的相关系数,因此,如果所采集的数据不是确定的数值而仅仅是秩,则使用Spearman或Kendall秩相关系数进行非参数相关分析就成为唯一的选择。 4 相关分析与回归分析的区别 相关分析和回归分析是极为常用的2种数理统计方法,在地质学研究领域有着广泛的用途。然而,由于这2种数理统计方法在计算方面存在很多相似之处,且在一些数理统计教科书中没有系统阐明这2种数理统计方法的内在差别,从而使一些研究者不能严格区分相关分析与回归分析。最常见的错误是,用回归分析的结果解释相关性问题。例如,作者将“回归直线(曲线)图”称为“相关性图”或“相关关系图”;将回归直线的R2(拟合度,或称“可决系数”)错误地称为“相关系数”或“相关系数的平方”;根据回归分析的结果宣称2个变量之间存在正的或负的相关关系。这些情况在国内极为普遍。 相关分析与回归分析均为研究2个或多个随机变量间关联性的方法,但2种数理统计方法存在本质的差别,即它们用于不同的研究目的。相关分析的目的在于检验两个随机变量的共变趋势(即共同变化的程度),回归分析的目的则在于试图用自变量来预测因变量的值。在相关分析中,两个变量必须同时都是随机变量,如果其中的一个变量不是随机变量,就不能进行相关分析。这是相关分析方法本身所决定的。对于回归分析,其中的因变量肯定为随机变量(这是回归分析方法本身所决定的),而自变量则可以是普通变量(规范的叫法是“固定变量”,有确定的取值)也可以是随机变量。如果自变量是普通变量,采用的回归方法就是最为常用的“最小二乘法”,即模型Ⅰ回归分析;如果自变量是随机变量,所采用的回归方法与计算者的目的有关---在以预测为目的的情况下,仍采用“最小二乘法”,在以估值为目的的情况下须使用相对严谨的“主轴法”、“约化主轴法”或“Bartlett法”,即模型Ⅱ回归分析。显然,对于回归分析,如果是模型Ⅰ回归分析,就根本不可能回答变量的“相关性”问题,因为普通变量与随机变量之间不存在“相关性”这一概念(问题在于,大多数的回归分析都是模型Ⅰ回归分析!)。此时,即使作者想描述2个变量间的“共变趋势”而改用相关分析,也会因相关分析的前提不存在而使分析结果毫无意义。如果是模型Ⅱ回归分析,鉴于两个随机变量客观上存在“相关性”问题,但因回归分析方法本身不能提供针对自变量和因变量之间相关关系的准确的检验手段,因此,若以预测为目的,最好不提“相关性”问题;若以探索两者的“共变趋势”为目的,建议作者改用相关分析。 需要特别指出的是,回归分析中的R2在数学上恰好是Pearson积矩相关系数r的平方。因此,这极易使作者们错误地理解R2的含义,认为R2就是“相关系数”或“相关系数的平方”。问题在于,对于自变量是普通变量(即其取值具有确定性)、因变量为随机变量的模型Ⅰ回归分析,2个变量之间的“相关性”概念根本不存在,又何谈“相关系数”呢?(说明:二元回归可决系数符号用小写r2) (答案来自网络)

相关推荐: